首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two outstanding problems pertaining to the population dynamics and evolution of the t complex in mice concern the frequency of t haplotypes in the wild and the degree to which these haplotypes recombine with their wild-type homologs. To address these problems, the frequency and distribution of several t complex-associated restriction fragment variants in wild mice were estimated. Sixty-four versions of chromosome 17 from wild-derived Mus musculus musculus and Mus musculus domesticus were examined with DNA probes for six loci within the t complex that exhibit restriction fragment variation. All six probes detect variants that have heretofore been found exclusively associated with the t complex. Haplotype analysis of wild-derived chromosomes revealed a high frequency (45.3%) of "mosaic" haplotypes with a mixture of t-specific and wild-type variants and only one haplotype with t-specific variants at all six loci. When 12 well-characterized t haplotypes isolated from diverse geographic regions were analyzed, only three had a complete set of t-specific restriction fragments for the six loci examined. The preponderance of mosaic haplotypes in both groups of mice can be explained by any one of the following hypotheses: genetic recombination between t haplotypes and their wild-type homologs, the persistence in wild populations of haplotypes that have descended from ancestral partial t haplotypes, or that the restriction fragment variants fixed in the ancestral t haplotype were also fixed in some wild-type haplotypes. There is evidence to support all three of these hypotheses in our data. The allelic composition of some mosaic haplotypes indicates that they may have been formed by segmental recombination, either double crossing over or gene conversion, rather than by simple single crossovers. The occurrence of indistinguishable mosaic haplotypes in both M. m. musculus and M. m. domesticus suggests that these haplotypes are ancestral rather than recently derived.  相似文献   

2.
We compared four inbred mouse strains in their physical performance, measured as a maximal treadmill running time, characteristics of soleus muscle, anatomic character, and growth. The strains used were Mus musculus domesticus [C57BL/6 (B6) and BALB/c], Mus musculus molossinus (MSM/Ms), and Mus spretus. Maximal running time was significantly different among these four mouse strains. Running time until exhaustion was highest in MSM/Ms and lowest in M. spretus. Maximal times for the laboratory mouse strains were nearly identical. Soleus muscle fiber type and cross-sectional area also differed significantly among the species. In particular, M. spretus was significantly different from the other inbred mouse strains. Growth in the wild-derived inbred mice appeared to be complete earlier than in the laboratory mice, and the body size of the wild strains was about half that of the laboratory strains. From these results, we propose that wild-derived inbred mouse strains are useful models for enhancing phenotypic variation in physical performance and adaptability.  相似文献   

3.
Three anonymous chromosome 17 DNA markers, D17Tu36, D17Tu43, and D17Le66B, differentiate between house mouse species and/or between t chromosomes. The D17Tu36 probe, which maps near the Fu locus and to the In(17)4 on t chromosomes, identifies at least 15 haplotypes, each haplotype characterized by a particular combination of DNA fragments obtained after digestion with the Taq I restriction endonuclease. Ten of these haplotypes occur in Mus domesticus, while the remaining five occur in M. musculus. In each of these two species, one haplotype is borne by t chromosomes while the other haplotypes are present on non-t chromosomes. The D17Tu43 probe, which maps near the D17Leh122 locus and to the In(17)3 on t chromosomes, also identifies at least 15 haplotypes in Taq I DNA digests, of which nine occur in M. domesticus and six in M. musculus. One of the nine M. domesticus haplotypes is borne by t chromosomes, the other haplotypes are borne by non-t chromosomes; two of the six M. musculus haplotypes are borne by t chromosomes and the remaining four by non-t chromosomes. Some of the D17Tu43 haplotypes are widely distributed in a given species, while others appear to be population-specific. Exceptions to species-specificity are found only in a few mice captured near the M. domesticus-M. musculus hybrid zone or in t chromosomes that appear to be of hybrid origin. The D17Leh66B probe, which maps to the In(17)2, distinguishes three haplotypes of M. domesticus-derived t chromosomes and one haplotype of M. musculus-derived t chromosomes. Because of these characteristics, the three markers are well suited for the study of mouse population genetics in general and of t chromosome population genetics in particular. A preliminary survey of wild M. domesticus and M. musculus populations has not uncovered any evidence of widespread introgression of genes from one species to the other; possible minor introgressions were found only in the vicinity of the hybrid zone. Typing of inbred strains has revealed the contribution of only M. domesticus DNA to the chromosome 17 of the laboratory mouse.  相似文献   

4.
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.  相似文献   

5.
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical and subtropical maize germplasm were genotyped using two single nucleotide polymorphism (SNP) chips each containing 1536 markers, from which 2052 informative SNPs and 386 haplotypes each constructed with two or more SNPs were used for linkage disequilibrium (LD) or association mapping. Single SNP- and haplotype-based LD mapping identified two significant SNPs and three haplotype loci [a total of four quantitative trait loci (QTL)] for plant height under well-watered and water-stressed conditions. For biomass, 32 SNPs and 12 haplotype loci (30 QTL) were identified using NDVIs measured at seven stages under the two water regimes. Some significant SNP and haplotype loci for NDVI were shared by different stages. Comparing significant loci identified by single SNP- and haplotype-based LD mapping, we found that six out of the 14 chromosomal regions defined by haplotype loci each included at least one significant SNP for the same trait. Significant SNP haplotype loci explained much higher phenotypic variation than individual SNPs. Moreover, we found that two significant SNPs (two QTL) and one haplotype locus were shared by plant height and NDVI. The results indicate the power of comparative LD mapping using single SNPs and SNP haplotypes with QTL shared by plant height and biomass as secondary traits for drought tolerance in maize.  相似文献   

6.
The DDK syndrome is an early embryonic lethal phenotype observed in crosses between females of the DDK inbred mouse strain and many non-DDK males. Lethality results from an incompatibility between a maternal DDK factor and a non-DDK paternal gene, both of which have been mapped to the Ovum mutant (Om) locus on mouse chromosome 11. Here we define a 465-kb candidate interval for the paternal gene by recombinant progeny testing. To further refine the candidate interval we determined whether males from 17 classical and wild-derived inbred strains are interfertile with DDK females. We conclude that the incompatible paternal allele arose in the Mus musculus domesticus lineage and that incompatible strains should share a common haplotype spanning the paternal gene. We tested for association between paternal allele compatibility/incompatibility and 167 genetic variants located in the candidate interval. Two diallelic SNPs, located in the Schlafen gene cluster, are completely predictive of the polar-lethal phenotype. These SNPs also predict the compatible or incompatible status of males of five additional strains.  相似文献   

7.
To examine genetic exchange between t haplotypes and their wild-type homologs, four previously identified mouse Chromosome (Chr) 17 variants termed mosaic haplotypes were analyzed in detail. Three of these haplotypes-one from a Mus musculus population in Bulgaria, one from a Mus domesticus population in Chile, and one from a M. domesticus population in Germany-display properties indicative of the t complex. All four haplotypes are exceptional because they are characterized by the presence of a few wild-type DNA markers in the distal inversion [In(17)4] of a t haplotype chromosome: thus, they are classified as mosaic t haplotypes. The mosaic pattern for each haplotype is distinct, however. We compared the mosaic haplotypes with each other, and with several well-characterized laboratory t haplotypes, by analyzing several DNA markers in the In(17)4 region of the t complex, where all of the mosaicism occurs. We used a combination of high-resolution restriction mapping, DNA sequencing, and analysis of new DNA markers to classify the haplotypes. This analysis shows that segmental exchange, either by gene conversion or double crossing-over, has occurred at molecular markers in the vicinity of a gene, Dnahc8, that is a candidate for the t complex distorter locus Tcd2. While it is unclear whether segmental exchanges have included the Tcd2 gene, it is apparent that several independent recombination events have occurred in In(17)4 during the recent evolution of t haplotypes.  相似文献   

8.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

9.
The vast majority of studies on mouse behavior are performed on laboratory mouse strains (Mus laboratorius), while studies of wild-mouse behavior are relatively rare. An interesting question is the relationship between the phenotypes of M. laboratorius and the phenotypes of their wild ancestors. It is commonly believed, often in the absence of hard evidence, that the behavior of wild mice exceeds by far, in terms of repertoire richness, magnitude of variables and variability of behavioral measures, the behavior of the classical inbred strains. Having phenotyped the open field behavior (OF) of eight of the commonly used laboratory inbred strains, two wild-derived strains and a group of first-generation-in-captivity local wild mice (Mus musculus domesticus), we show that contrary to common belief, wild-mouse OF behavior is moderate, both in terms of end-point values and in terms of their variability, being embedded within the multidimensional data space spanned by laboratory inbred strains. The implication could be that whereas natural selection favors moderate locomotor behavior in wild mice, the inbreeding process tends to generate in mice, in some of the features, extreme and more variable behavior.  相似文献   

10.
We performed a quantitative trait locus (QTL) analysis of eight body weights recorded weekly from 3 weeks to 10 weeks after birth and two weight gains recorded between 3 weeks and 6 weeks, and between 6 weeks and 10 weeks in an inter-sub-specific backcross population of wild Mus musculus castaneus mice captured in the Philippines and the common inbred strain C57BL/6J ( M. musculus domesticus ), to elucidate the complex genetic architecture of body weight and growth. Interval mapping identified 17 significant QTLs with main effects on 11 chromosomes. In particular, the main effect of the most potent QTL on proximal chromosome 2 increased linearly with age, whereas other QTLs exerted effects on either the early or late growth period. Surprisingly, although wild mice displayed 60% of the body size of their C57BL/6J counterparts, the wild-derived allele enhanced growth at two QTLs. Interestingly, five of the 17 main-effect QTLs identified had significant epistatic interaction effects. Five new epistatic QTLs with no main effects were identified on different chromosomes or regions. For one pair of epistatic QTLs, mice that were heterozygous for the wild-derived allele at one QTL and homozygous for that allele at another QTL exhibited the most rapid growth in all four possible genotypic combinations. Out of the identified QTLs, several showed significant sex-specific effects.  相似文献   

11.
Airway hyper-responsiveness (AHR) is a critical phenotype of human asthma and animal models of asthma. Other studies have measured AHR in nine mouse strains, but only six strains have been used to identify genetic loci underlying AHR. Our goals were to increase the genetic diversity of available strains by surveying 27 additional strains, to apply haplotype association mapping to the 36-strain survey, and to identify new genetic determinants for AHR. We derived AHR from the increase in airway resistance in females subjected to increasing levels of methacholine concentrations. We used haplotype association mapping to identify associations between AHR and haplotypes on chromosomes 3, 5, 8, 12, 13, and 14. And we used bioinformatics techniques to narrow the identified region on chromosome 13, reducing the region to 29 candidate genes, with 11 of considerable interest. Our combined use of haplotype association mapping with bioinformatics tools is the first study of its kind for AHR on these 36 strains of mice. Our analyses have narrowed the possible QTL genes and will facilitate the discovery of novel genes that regulate AHR in mice.  相似文献   

12.
Two house mouse subspecies, Mus musculus domesticus and Mus musculus musculus, form a hybrid zone in Europe and represent a suitable model for inferring the genes contributing to isolation barriers between parental taxa. Despite long-term intensive studies of this hybrid zone, we still know relatively little about the causes and mechanisms maintaining the 2 taxa as separate subspecies; therefore, to gain insight into this process, we developed 8 wild-derived inbred house mouse strains. In order to produce strains as pure domesticus or musculus genomes as possible, the individuals used to establish the breeding colony for the 3 domesticus and 2 of the musculus strains were captured in the Czech Republic from wild populations at extreme western and eastern edges of the subspecific contact zone, respectively. The remaining 3 musculus strains were bred from mice captured about 250 km east of the hybrid zone. Genetic analysis based on 361 microsatellite loci showed that 82% of these markers are diagnostic for either the musculus or the domesticus strains. In order to demonstrate the potential utility of this genetic differentiation in such strains, phenotypic variation was scored for 2 strains from opposite edges of the hybrid zone and significant differences in morphology, reproductive performance, in vitro immune responses, mate choice based on urinary signals, and aggressiveness were found. In addition, the 3 strains derived from musculus populations far from the hybrid zone display significant differences in polymorphism in hybrid male sterility when crossed with the laboratory strains C57BL/6 or C57BL/10, which have a predominantly domesticus genome. Although further studies will be necessary to demonstrate intersubspecific differences, all analyses presented here indicate that these newly developed house mouse strains represent a powerful tool for elucidating the genetic basis of isolation barriers in hybrid zones and for studying speciation in general.  相似文献   

13.
Payseur BA  Hoekstra HE 《Genetics》2005,171(4):1905-1916
Reproductive isolation is often caused by the disruption of genic interactions that evolve in geographically separate populations. Identifying the genomic regions and genes involved in these interactions, known as "Dobzhansky-Muller incompatibilities," can be challenging but is facilitated by the wealth of genetic markers now available in model systems. In recent years, the complete genome sequence and thousands of single nucleotide polymorphisms (SNPs) from laboratory mice, which are largely genetic hybrids between Mus musculus and M. domesticus, have become available. Here, we use these resources to locate genomic regions that may underlie reproductive isolation between these two species. Using genotypes from 332 SNPs that differ between wild-derived strains of M. musculus and M. domesticus, we identified several physically unlinked SNP pairs that show exceptional gametic disequilibrium across the lab strains. Conspecific alleles were associated in a disproportionate number of these cases, consistent with the action of natural selection against hybrid gene combinations. As predicted by the Dobzhansky-Muller model, this bias was differentially attributable to locus pairs for which one hybrid genotype was missing. We assembled a list of potential Dobzhansky-Muller incompatibilities from locus pairs that showed extreme associations (only three gametic types) among conspecific alleles. Two SNPs in this list map near known hybrid sterility loci on chromosome 17 and the X chromosome, allowing us to nominate partners for disrupted interactions involving these genomic regions for the first time. Together, these results indicate that patterns produced by speciation between M. musculus and M. domesticus are visible in the genomes of lab strains of mice, underscoring the potential of these genetic model organisms for addressing general questions in evolutionary biology.  相似文献   

14.
White MA  Steffy B  Wiltshire T  Payseur BA 《Genetics》2011,189(1):289-304
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.  相似文献   

15.
Recently, a method for fine mapping quantitative trait loci (QTL) using linkage disequilibrium was proposed to map QTL by modeling covariance between individuals, due to identical-by-descent (IBD) QTL alleles, on the basis of the similarity of their marker haplotypes under an assumed population history. In the work presented here, the advantage of using marker haplotype information for fine mapping QTL was studied by comparing the IBD-based method with 10 markers to regression on a single marker, a pair of markers, or a two-locus haplotype under alternative population histories. When 10 markers were genotyped, the IBD-based method estimated the position of the QTL more accurately than did single-marker regression in all populations. When 20 markers were genotyped for regression, as single-marker methods do not require knowledge of haplotypes, the mapping accuracy of regression in all populations was similar to or greater than that of the IBD-based method using 10 markers. Thus for populations similar to those simulated here, the IBD-based method is comparable to single-marker regression analysis for fine mapping QTL.  相似文献   

16.
We have detected three unique apolipoprotein A-IV (apoA-IV) charge isoforms in strains of commensal mice. The cDNA sequences for one representative of each isoform (Mus domestesticus strains C57BL/6J and 129/J and Mus castaneus) revealed a polymorphism within a series of four imperfect repeats encoding the sequence Glu-Gln-Ala/Val-Gln. Insertions or deletions of 12 nucleotides within this repetitive region have given rise to three genotypes characterized by three (129), four (C57BL/6), or five (M. castaneus) copies of the repeat unit. To ascertain the extent of this variation among other species of the Mus genus, we sequenced this region of apoA-IV cDNAs from eight additional M. domesticus inbred strains and from five wild-derived Mus species. All eight additional M. domesticus strains examined had four repeat units, as found in C57BL/6. Among wild-derived mice, however, one species (Mus spretus) had three repeats, two species (Mus cookii and Mus cervicolor) had four repeats, and two species (Mus hortulanus and Mus minutoides) had five repeats. A lack of correlation between the number of repeat units and the phylogeny of Mus species indicates that independent mutations may have occurred throughout the evolution of specific mouse lineages. We suggest that the repetitive nature of the polymorphic sequence may predispose this region to slippage errors during DNA replication, resulting in frequent deletion/insertion mutations.  相似文献   

17.
The presence of the L1 sequences, L1Md4 next to the pseudogene beta h3 and I12 found in the twelfth intron of the albumin gene, in certain strains of laboratory mice but not of others has led to the suggestion that these sequences were recent insertions into the Mus mus domesticus genome. To be sure that they are really recent insertions and not relics of an ancestral chromosome, we investigated the presence or absence of these sequences in populations of wild mice belonging to the semispecies M. m. domesticus and M. m. musculus as well as in other species of the genus Mus and in related murids. The sequence I12 in the albumin gene was found in 34% of the chromosomes of the wild mice belonging to M. m. domesticus and to a lesser extent (6%) in M. m. musculus. Of 114 M. m. domesticus chromosomes, L1Md4 was found in only nine, seven of which came from the same locality. Its presence was associated with the haplotype Hbbp, which is relatively rare in European populations of M. musculus. Since there was no evidence for the presence of these two L1 sequences in more distantly related species, we conclude that they are recent insertions in the M. musculus genome.   相似文献   

18.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

19.
We tested 96 microsatellites and 10 single nucleotide polymorphisms for their allelic distribution in two subspecies of the house mouse, Mus musculus musculus and M. m. domesticus. Sixty‐two microsatellites discriminated strain‐specific differences among nine wild‐derived ‘musculus’ and ‘domesticus’ and three ‘classical’ laboratory strains. For efficient genotyping, we optimized multiplex conditions using five microsatellites per polymerase chain reaction. All 10 single nucleotide polymorphisms were also optimized for simultaneous analysis in one reaction using SNaPshot multiplex. The uniform distribution of markers on autosomes and on the X chromosome makes these panels potentially useful tools for quantitative trait loci mapping of wild house mice.  相似文献   

20.
S. H. Pilder  M. F. Hammer    L. M. Silver 《Genetics》1991,129(1):237-246
The effects of heterospecific combinations of mouse chromosome 17 on male fertility and transmission ratio were investigated through a series of breeding studies. Animals were bred to carry complete chromosome 17 homologs, or portions thereof, from three different sources-Mus domesticus, Mus spretus and t haplotypes. These chromosome 17 combinations were analyzed for fertility within the context of a M. domesticus or M. spretus genetic background. Two new forms of hybrid sterility were identified. First, the heterospecific combination of M. spretus and t haplotype homologs leads to complete male sterility on both M. spretus and M. domesticus genetic backgrounds. This is an example of symmetrical hybrid sterility. Second, the presence of a single M. domesticus chromosome 17 homolog within a M. spretus background causes sterility, however, the same combination of chromosome 17 homologs does not cause sterility within the M. domesticus background. This is a case of asymmetrical hybrid sterility. Through an analysis of recombinant chromosomes, it was possible to map the M. domesticus, M. spretus and t haplotype alleles responsible for these two hybrid sterility phenotypes to the same novel locus (Hybrid sterility-4). Previous structural studies had led to the hypothesis that the ancestral t haplotype originated through an introgression event from M. spretus or a related species. If this were true, one might expect that (1) M. spretus homologs would be transmitted at a non-Mendelian ratio within the M. domesticus background, and (2) t haplotypes would be transmitted at a ratio closer to Mendelian within the M. spretus background.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号