首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Oxidants are well recognized for their capacity to reduce the phosphorylation of the mammalian target of rapamycin (mTOR) substrates, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase 1 (S6K1), thereby hindering mRNA translation at the level of initiation. mTOR functions to regulate mRNA translation by forming the signaling complex mTORC1 (mTOR, raptor, GβL). Insulin signaling to mTORC1 is dependent upon phosphorylation of Akt/PKB and the inhibition of the tuberous sclerosis complex (TSC1/2), thereby enhancing the phosphorylation of 4E-BP1 and S6K1. In this study we report the effect of H2O2 on insulin-stimulated mTORC1 activity and assembly using A549 and bovine aortic smooth muscle cells. We show that insulin stimulated the phosphorylation of TSC2 leading to a reduction in raptor–mTOR binding and in the quantity of proline-rich Akt substrate 40 (PRAS40) precipitating with mTOR. Insulin also increased 4E-BP1 coprecipitating with mTOR and the phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1. H2O2, on the other hand, opposed the effects of insulin by increasing raptor–mTOR binding and the ratio of PRAS40/raptor derived from the mTOR immunoprecipitates in both cell types. These effects occurred in conjunction with a reduction in 4E-BP1 phosphorylation and the 4E-BP1/raptor ratio. siRNA-mediated knockdown of PRAS40 in A549 cells partially reversed the effect of H2O2 on 4E-BP1 phosphorylation but not on S6K1. These findings are consistent with PRAS40 functioning as a negative regulator of insulin-stimulated mTORC1 activity during oxidant stress.  相似文献   

2.
Insulin acutely activates protein synthesis in ventricular cardiomyocytes from adult rats. In this study, we have established the methodology for studying the regulation of the signaling pathways and translation factors that may be involved in this response and have examined the effects of acute insulin treatment on them. Insulin rapidly activated the 70-kDa ribosomal S6 kinase (p70 S6k), and this effect was inhibited both by rapamycin and by inhibitors of phosphatidylinositol 3-kinase. The activation of p70 S6k is mediated by a signaling pathway involving the mammalian target of rapamycin (mTOR), which also modulates other translation factors. These include the eukaryotic initiation factor (eIF) 4E binding proteins (4E-BPs) and eukaryotic elongation factor 2 (eEF2). Insulin caused phosphorylation of 4E-BP1 and induced its dissociation from eIF4E, and these effects were also blocked by rapamycin. Concomitant with this, insulin increased the binding of eIF4E to eIF4G. Insulin also activated protein kinase B (PKB), which may lie upstream of p70 S6k and 4E-BP1, with the activation of the different isoforms being in the order alpha>beta>gamma. Insulin also caused inhibition of glycogen synthase kinase 3, which lies downstream of PKB, and of eEF2 kinase. The phosphorylation of eEF2 itself was also decreased by insulin, and this effect and the inactivation of eEF2 kinase were attenuated by rapamycin. The activation of overall protein synthesis by insulin in cardiomyocytes was substantially inhibited by rapamycin (but not by inhibitors of other specific signaling pathways, e.g., mitogen-activated protein kinase), showing that signaling events linked to mTOR play a major role in the control of translation by insulin in this cell type.  相似文献   

3.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

4.
The Type I IFN receptor-generated signals required for initiation of mRNA translation and, ultimately, induction of protein products that mediate IFN responses, remain unknown. We have previously shown that IFNalpha and IFNbeta induce phosphorylation of insulin receptor substrate proteins and downstream engagement of the phosphatidylinositol (PI) 3'-kinase pathway. In the present study we provide evidence for the existence of a Type I IFN-dependent signaling cascade activated downstream of PI 3'-kinase, involving p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated on threonine 421 and serine 424 and is activated during treatment of cells with IFNalpha or IFNbeta. Such activation of p70 S6K is blocked by pharmacological inhibitors of the PI 3'-kinase or the FKBP 12-rapamycin-associated protein/mammalian target of rapamycin (FRAP/mTOR). Consistent with this, the Type I IFN-dependent phosphorylation/activation of p70 S6K is defective in embryonic fibroblasts from mice with targeted disruption of the p85alpha and p85beta subunits of the PI 3'-kinase (p85alpha-/-beta-/-). Treatment of sensitive cell lines with IFNalpha or IFNbeta also results in phosphorylation/inactivation of the 4E-BP-1 repressor of mRNA translation. Such 4E-BP1 phosphorylation is also PI3'-kinase-dependent and rapamycin-sensitive, indicating that the Type I IFN-inducible activation of PI3'-kinase and FRAP/mTOR results in dissociation of 4E-BP1 from the eukaryotic initiation factor-4E (eIF4E) complex. Altogether, our data establish that the Type I IFN receptor-activated PI 3'-kinase pathway mediates activation of the p70 S6 kinase and inactivation of 4E-BP1, to regulate mRNA translation and induction of Type I IFN responses.  相似文献   

5.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   

6.
7.
Insulin stimulates glucose transport into muscle and fat cells by enhancing GLUT4 abundance in the plasma membrane through activation of phosphatidylinositol 3-kinase (PI3K). Protein kinase B (PKB) and PKCzeta are known PI3K downstream targets in the regulation of GLUT4. The serum- and glucocorticoid-inducible kinase SGK1 is similarly activated by insulin and capable to regulate cell surface expression of several metabolite transporters. In this study, we evaluated the putative role of SGK1 in the modulation of GLUT4. Coexpression of the kinase along with GLUT4 in Xenopus oocytes stimulated glucose transport. The enhanced GLUT4 activity was paralleled by increased transporter abundance in the plasma membrane. Disruption of the SGK1 phosphorylation site on GLUT4 ((S274A)GLUT4) abrogated the stimulating effect of SGK1. In summary, SGK1 promotes glucose transporter membrane abundance via GLUT4 phosphorylation at Ser274. Thus, SGK1 may contribute to the insulin and GLUT4-dependent regulation of cellular glucose uptake.  相似文献   

8.
9.
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.  相似文献   

10.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.  相似文献   

11.
Multiple studies have suggested that the protein kinase Akt/PKB (protein kinase B) is required for insulin-stimulated glucose transport in skeletal muscle and adipose cells. In an attempt to understand links between Akt activation and glucose transport regulation, we applied mass spectrometry-based proteomics and bioinformatics approaches to identify potential Akt substrates containing the phospho-Akt substrate motif RXRXXpS/T. The present study describes the identification of the Rab GAP (GTPase-activating protein)-domain containing protein TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1], which is closely related to TBC1D4 [TBC domain family, member 4, also denoted AS160 (Akt substrate of 160 kDa)], as an Akt substrate that is phosphorylated at Thr(590). RNAi (RNA interference)-mediated silencing of TBC1D1 elevated basal deoxyglucose uptake by approx. 61% in 3T3-L1 mouse embryo adipocytes, while the suppression of TBC1D4 and RapGAP220 under the same conditions had little effect on basal and insulin-stimulated deoxyglucose uptake. Silencing of TBC1D1 strongly increased expression of the GLUT1 glucose transporter but not GLUT4 in cultured adipocytes, whereas the decrease in TBC1D4 had no effect. Remarkably, loss of TBC1D1 in 3T3-L1 adipocytes activated the mTOR (mammalian target of rapamycin)-p70 S6 protein kinase pathway, and the increase in GLUT1 expression in the cells treated with TBC1D1 siRNA (small interfering RNA) was blocked by the mTOR inhibitor rapamycin. Furthermore, overexpression of the mutant TBC1D1-T590A, lacking the putative Akt/PKB phosphorylation site, inhibited insulin stimulation of p70 S6 kinase phosphorylation at Thr(389), a phosphorylation induced by mTOR. Taken together, our data suggest that TBC1D1 may be involved in controlling GLUT1 glucose transporter expression through the mTOR-p70 S6 kinase pathway.  相似文献   

12.
Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted.  相似文献   

13.
Although amino acids can function as signaling molecules in the regulation of many cellular processes, mechanisms surrounding L-threonine involvement in embryonic stem cell (ESC) functions have not been explored. Thus, we investigated the effect of L-threonine on regulation of mouse (m)ESC self-renewal and related signaling pathways. In L-threonine-depleted mESC culture media mRNA of self-renewal marker genes, [(3)H]thymidine incorporation, expression of c-Myc, Oct4, and cyclins protein was attenuated. In addition, resupplying L-threonine (500 μM) after depletion restores/maintains the mESC proliferation. Disruption of the lipid raft/caveolae microdomain through treatment with methyl-β-cyclodextrin or transfection with caveolin-1 specific small interfering RNA blocked L-threonine-induced proliferation of mESCs. Addition of L-threonine induced phosphorylation of Akt, ERK, p38, JNK/SAPK, and mTOR in a time-dependent manner. This activity was blocked by LY 294002 (PI3K inhibitor), wortmannin (PI3K inhibitor), or an Akt inhibitor. L-threonine-induced activation of mTOR, p70S6K, and 4E-BP1 as well as cyclins and Oct4 were blocked by PD 98059 (ERK inhibitor), SB 203580 (p38 inhibitor) or SP 600125 (JNK inhibitor). Furthermore, L-threonine induced phosphorylation of raptor and rictor binding to mTOR was completely inhibited by 24 h treatment with rapamycin (mTOR inhibitor); however, a 10 min treatment with rapamycin only partially inhibited rictor phosphorylation. L-threonine induced translocation of rictor from the membrane to the cytosol/nuclear, which blocked by pretreatment with rapamycin. In addition, rapamycin blocked L-threonine-induced increases in mRNA expressions of trophoectoderm and mesoderm marker genes and mESC proliferation. In conclusion, L-threonine stimulated ESC G(1)/S transition through lipid raft/caveolae-dependent PI3K/Akt, MAPKs, mTOR, p70S6K, and 4E-BP1 signaling pathways.  相似文献   

14.
L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells. Insulin induced a marked translocation of GLUT4myc to the plasma membrane within 20 min. This was prevented by transient transfection of a dominant inhibitory construct of phosphatidylinositol (PI) 3-kinase (Deltap85alpha). Transiently transfected cells were identified by cotransfection of green fluorescent protein. A constitutively active PKBalpha, created by fusion of a viral Gag protein at its N terminus (GagPKB), increased the cell surface density of GLUT4myc compared to that of neighboring nontransfected cells. A kinase-inactive, phosphorylation-deficient PKBalpha/Akt1 construct with the mutations K179A (substitution of alanine for the lysine at position 179), T308A, and S473A (AAA-PKB) behaved as a dominant-negative inhibitor of insulin-dependent activation of cotransfected wild-type hemagglutinin (HA)-tagged PKB. Furthermore, AAA-PKB markedly inhibited the insulin-induced phosphorylation of cotransfected BAD, demonstrating inhibition of the endogenous PKB/Akt. Under the same conditions, AAA-PKB almost entirely blocked the insulin-dependent increase in surface GLUT4myc. PKBalpha with alanine substitutions T308A and S473A (AA-PKB) or K179A (A-PKB) alone was a less potent inhibitor of insulin-dependent activation of wild-type HA-PKB or GLUT4myc translocation than was AAA-PKB. Cotransfection of AAA-PKB with a fourfold DNA excess of HA-PKB rescued insulin-stimulated GLUT4myc translocation. AAA-PKB did not prevent actin bundling (membrane ruffling), though this response was PI 3-kinase dependent. Therefore, it is unlikely that AAA-PKB acted by inhibiting PI 3-kinase signaling. These results outline an important role for PKBalpha/Akt1 in the stimulation of glucose transport by insulin in muscle cells in culture.  相似文献   

15.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

16.
Insulin increases glucose transport into cells of target tissues, primarily striated muscle and adipose. This is accomplished via the insulin-dependent translocation of the facilitative glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Insulin binds to the cell-surface insulin receptor and activates its intrinsic tyrosine kinase activity. The subsequent activation of phosphatidylinositol 3-kinase (PI 3-K) is well known to be necessary for the recruitment of GLUT4 to the cell surface. Both protein kinase B (PKB) and the atypical protein kinase C(lambda/zeta) (PKClambda/zeta) appear to function downstream of PI 3-K, but how these effectors influence GLUT4 translocation remains unknown. In addition, emerging evidence suggests that a second signaling cascade that functions independently of the PI 3-K pathway is also required for the insulin-dependent translocation of GLUT4. This second pathway involves the Rho-family GTP binding protein TC10, which functions within the specialized environment of lipid raft microdomains at the plasma membrane. Future work is necessary to identify the downstream effectors that link TC10, PKB, and PKClambda/zeta to GLUT4 translocation. Progress in this area will come from a better understanding of the compartmentalization of GLUT4 within the cell and of the mechanisms responsible for targeting the transporter to specialized insulin-responsive storage compartments. Furthermore, an understanding of how GLUT4 is retained within and released from these compartments will facilitate the identification of downstream signaling molecules that function proximal to the GLUT4 storage sites.  相似文献   

17.
Previously we demonstrated that secondary products of plant mevalonate metabolism called isoprenoids attenuate 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA translational efficiency and cause tumor cell death. Here we compared effects of "pure" isoprenoids (perillyl alcohol and gamma-tocotrienol) and a "mixed" isoprenoid-genistein-on the PKB/Akt/mTOR pathway that controls mRNA translation and m(7)GpppX eIF4F cap binding complex formation. Effects were cell- and isoprenoid-specific. Perillyl alcohol and genistein suppressed 4E-BP1(Ser65) phosphorylation in prostate tumor cell lines, DU145 and PC-3, and in Caco2 adenocarcinoma cells. Suppressive effects were similar to or greater than that observed with a PI3 kinase inhibitor or rapamycin, an mTOR inhibitor. 4E-BP1(Thr37) phosphorylation was reduced by perillyl alcohol and genistein in DU145, but not in PC-3. Conversely, perillyl alcohol but not genistein decreased 4E-BP1(Thr37) phosphorylation in Caco2. PKB/Akt activation via Ser473 phosphorylation was enhanced in DU145 by perillyl alcohol and in PC-3 by gamma-tocotrienol, but was suppressed by genistein. Importantly, perillyl alcohol disrupted interactions between eIF4E and eIF4G, key components of eIF4F (m(7)GpppX) cap binding complex. These results demonstrate that "pure" isoprenoids and genistein differentially impact cap-dependent translation in tumor cell lines.  相似文献   

18.
The development of polarized hippocampal neurons with a single axon and multiple dendrites depends on the activity of phosphoinositide 3-kinase (PI3K) and the GTPase Rap1B. Here we show that PI3K regulates axon specification and elongation through the GTPase Rheb and its target mammalian target of rapamycin (mTOR). Overexpression of Rheb induces the formation of multiple axons, whereas its suppression by RNA interference blocks axon specification. mTOR is a central regulator of translation that phosphorylates eIF4E-binding proteins like 4E-BP1. Axon formation was suppressed by inhibition of mTOR and expression of mTOR-insensitive 4E-BP1 mutants. Inhibition of PI3K or mTOR reduced the level of Rap1B, which acts downstream of Rheb and mTOR. The ubiquitin E3 ligase Smurf2 mediates the restriction of Rap1B by initiating its degradation. Suppression of Smruf2 by RNA interference is able to compensate the loss of Rheb. These results indicate that the mTOR pathway is required to counteract the Smurf2-initiated degradation of Rap1B during the establishment of neuronal polarity.  相似文献   

19.
The aim of this study was to determine whether the phosphatidylinositol 3-kinase (PI3K)-dependent mammalian target of rapamycin (mTOR)-eukaryotic initiation factor 4E binding protein 1 (4E-BP1) signal pathway and S6 kinase (S6K), the major element of the mTOR pathway, play a role in the enhanced vascular endothelial cell (EC) proliferation induced by cyclic strain. Bovine aortic ECs were subjected to an average of 10% strain at a rate of 60 cycles/min for < or =24 h. Cyclic strain-induced EC proliferation was reduced by pretreatment with rapamycin but not the MEK1 inhibitor PD-98059. The PI3K inhibitors wortmannin and LY-294002 also attenuated strain-induced EC proliferation and strain-induced activation of S6K. Rapamycin but not PD-98059 prevented strain-induced S6K activation, and PD-98059 but not rapamycin prevented strain-induced activation of extracellular signal-regulated kinases 1 and 2. Cyclic strain also activated 4E-BP1, which could be inhibited by PI3K inhibitors. These data suggest that the PI3K-dependent S6K-mTOR-4E-BP1 signal pathway may be critically involved in strain-induced bovine aortic EC proliferation.  相似文献   

20.
We reported previously that protein kinase Calpha (PKCalpha), a negative regulator of cell growth in the intestinal epithelium, inhibits cyclin D1 translation by inducing hypophosphorylation/activation of the translational repressor 4E-BP1. The current study explores the molecular mechanisms underlying PKC/PKCalpha-induced activation of 4E-BP1 in IEC-18 nontransformed rat ileal crypt cells. PKC signaling is shown to promote dephosphorylation of Thr(45) and Ser(64) on 4E-BP1, residues directly involved in its association with eIF4E. Consistent with the known role of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway in regulation of 4E-BP1, PKC signaling transiently inhibited PI3K activity and Akt phosphorylation in IEC-18 cells. However, PKC/PKCalpha-induced activation of 4E-BP1 was not prevented by constitutively active mutants of PI3K or Akt, indicating that blockade of PI3K/Akt signaling is not the primary effector of 4E-BP1 activation. This idea is supported by the fact that PKC activation did not alter S6 kinase activity in these cells. Further analysis indicated that PKC-mediated 4E-BP1 hypophosphorylation is dependent on the activity of protein phosphatase 2A (PP2A). PKC signaling induced an approximately 2-fold increase in PP2A activity, and phosphatase inhibition blocked the effects of PKC agonists on 4E-BP1 phosphorylation and cyclin D1 expression. H(2)O(2) and ceramide, two naturally occurring PKCalpha agonists that promote growth arrest in intestinal cells, activate 4E-BP1 in PKC/PKCalpha-dependent manner, supporting the physiological significance of the findings. Together, our studies indicate that activation of PP2A is an important mechanism underlying PKC/PKCalpha-induced inhibition of cap-dependent translation and growth suppression in intestinal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号