首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced ethylene production and leaf epinasty are characteristic responses of tomato (Lycopersicon esculentum Mill.) to waterlogging. It has been proposed (Bradford, Yang 1980 Plant Physiol 65: 322-326) that this results from the synthesis of the immediate precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), in the waterlogged roots, its export in the transpiration stream to the shoot, and its rapid conversion to ethylene. Inhibitors of the ethylene biosynthetic pathway are available for further testing of this ACC transport hypothesis: aminooxyacetic acid (AOA) or aminoethoxyvinylglycine (AVG) block the synthesis of ACC, whereas CO2+ prevents its conversion to ethylene. AOA and AVG, supplied in the nutrient solution, were found to inhibit the synthesis and export of ACC from anaerobic roots, whereas Co2+ had no effect, as predicted from their respective sites of action. Transport of the inhibitors to the shoot was demonstrated by their ability to block wound ethylene synthesis in excised petioles. All three inhibitors reduced petiolar ethylene production and epinasty in anaerobically stressed tomato plants. With AOA and AVG, this was due to the prevention of ACC import from the roots as well as inhibition of ACC synthesis in the petioles. With Co2+, conversion of both root- and petiole-synthesized ACC to ethylene was blocked. Collectively, these data support the hypothesis that the export of ACC from low O2 roots to the shoot is an important factor in the ethylene physiology of waterlogged tomato plants.  相似文献   

2.
We have examined whether octanoic acid (OA) one of the short chain saturated fatty acids (SCSFA), increases ethylene response in the following three ethylene-mediated processes: a) hypocotyl growth in darkness; b) formation of new flowers; c) flower abscission. These processes were examined in the presence or absence of exogenous ethylene in Arabidopsis wild type (WT) and in the ethylene-insensitive mutants, etr1-3 and ein2-1 and in the ethylene over-producer mutant eto1-1. Our results show that OA decreased hypocotyl length of WT in the absence or presence of exogenous ethylene, apparently showing that OA acts via augmentation of ethylene action. However, the hypocotyl growth inhibition could not be ascribed to increased ethylene sensitivity since application of inhibitors of ethylene synthesis (aminoethoxyvinylglycine; AVG) or action (1-methylcyclopropene;1-MCP) to WT seedlings did not prevent specifically the OA-induced growth inhibition. Also, OA inhibited hypocotyl growth in the mutants etr1-3 and ein2-1 in a similar pattern to that obtained in WT. On the other hand, OA had no effect on flower formation neither in WT, etr1-3 and eto1-1, in which ethylene reduced flower formation, nor in the ein2-1 mutant, in which ethylene had no effect. OA also did not increase flower abscission in WT or in the mutants etr1-3 and ein2-1 neither in the absence nor in the presence of ethylene. However, OA has augmented flower abscission in the mutant eto1-1 only in the absence of exogenous ethylene. This result might indicate that the effect of OA on eto1-1 is specific to this mutant and is not due to general deleterious effects inflicted by OA. Taken together, our results show that in general OA does not augment ethylene response in Arabidopsis, but it might affect ethylene action in flower abscission of the ethylene-overproducer mutant.  相似文献   

3.
The suggestion that indole-3-acetic acid (IAA)-stimulated ethylene production is associated with oxidative degradation of IAA and is mediated by 3-methyleneoxindole (MOI) has been tested in mung bean (Phaseolus aureus Roxb.) hypocotyl segments. While IAA actively stimulated ethylene production, MOI and indole-3-aldehyde, the major products of IAA oxidation, were inactive. Tissues treated with a mixture of intermediates of IAA oxidation, obtained from a 1-hour incubation of IAA with peroxidase, failed to stimulate ethylene production. Furthermore, chlorogenic acid and p-coumaric acid, which are known to interfere with the enzymic oxidation of IAA to MOI, had no effect on IAA-stimulated ethylene production. Other oxidation products of IAA, including oxindole-3-acetic acid, indole-3-carboxylic acid, (2-sulfoindole)-3-acetic acid, and dioxindole-3-acetic acid, were all inactive. 1-Naphthaleneacetic acid was as active as IAA in stimulating ethylene production but was decarboxylated at a much lower rate than IAA, suggesting that oxidative decarboxylation of auxins is not linked to ethylene production. These results demonstrate that IAA-stimulated ethylene production in mung bean hypocotyl tissue is not mediated by MOI or other associated oxidative products of IAA.  相似文献   

4.
Evidence is presented in support of the hypothesis that stress ethylene formation determines ozone toxicity in plants. In studies with mung beans ( Vigna radiata ) ozone toxicity was reduced not only when plants had been pretreated with aminoethoxyvinylglycine (AVG) but also after pretreatment of plants with CoCl2 and ascorbic acid. While AVG prevents the enzymatic conversion of S-adenosylmethionine (SAM) to I-aminocyclopropane-I-carboxylic acid (ACC), cobalt and free radical scavengers such as ascorbic acid inhibit the subsequent conversion of ACC to ethylene. Stomatal opening was not affected by pretreatment of plants with inhibitors of ethylene biosynthesis.  相似文献   

5.
Hypocotyl-derived callus from the Helianthus annuus L. inbred line SS415B regenerated significantly more plants if the seedlings were grown in the light. The difference between light- and dark-grown seedlings was not correlated with differences in seedling ethylene production, but seemed to be due to a difference in sensitivity to ethylene at a specific time during seedling growth. Treating 3-day-old dark-grown seedlings with 10 μ M aminoethoxyvinylglycine (AVG) effectively inhibited ethylene production for at least 7 days. Hypocotyl callus derived from AVG-treated seedlings gave the same amount of regeneration as callus from light-grown seedlings. Promotion of regeneration by AVG was not seen unless the 3-day-old seedlings were grown for 4 additional days prior to culturing hypocotyl explants. The effects of AVG could be reversed by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) during these 4 days. After the 4 days, ACC was no longer effective.  相似文献   

6.
Peeling the abaxial epidermis from oat leaves (Avena sativa var. Victory) induces the formation of wound ethylene and the development of resistance to cellulolytic digestion of mesophyll cell walls. Ethylene release begins between 1 and 2 hours after peeling in the light or dark. Aminoethoxyvinylglycine (AVG, 0.1 millimolar), CoCl2 (1.0 millimolar), propyl gallate (PG, 1.0 millimolar) or aminooxyacetic acid (AOA, 1.0 millimolar) inhibits, whereas AgNO3 stimulates wound ethylene formation. Incubation on inhibitors of ethylene biosynthesis (AVG, CoCl2, PG, AOA) or action (AgNO3, hypobaric pressure or the trapping of ethylene with HgClO4) also prevents the development of wound-induced resistance to enzymic cell wall digestion. 1-Aminocyclopropane-1-carboxylic acid (ACC, 1.0 millimolar) reverses AVG (0.1 millimolar) inhibition of the development of resistance. Exogenous ethylene partially induces the development of resistance in unwounded oat leaves.

These results suggest that peeling of oat leaves induces ethylene biosynthesis, which in turn effects changes in the mesophyll cells resulting in the development of resistance to cellulolytic digestion.

  相似文献   

7.
A protocol is presented for direct adventitous shoot organogenesis and complete plant regeneration from seedling-derived explants of pomegranate (Punica granatum L.), a tropical fruit tree. Murashige and Skoog (1962) (MS) medium enriched with 8.9 mumol/L benzyladenine (BA), 5.4 mumol/L naphthaleneacetic acid (NAA) and 10% coconut water (CW) induced adventitious shoot bud differentiation in axenic seedling-derived cotyledons as well as hypocotyl segments. The cotyledons were more responsive than the hypocotyls. Addition of ethylene inhibitors such as AgNO3 (10-40 mumol/L) and aminoethoxyvinylglycine (AVG) (5-15 mumol/L) to the medium markedly enhanced regeneration frequency as well as number of shoots obtained per explant. The promotive effect of AVG and AgNO3 on shoot organogenesis was observed only in cotyledon explants. The regeneration medium containing AgNO3 (20 mumol/L) or AVG (10 mumol/L) induced adventitious shoot buds from 57% or 53% of the cotyledon explants respectively. These shoot buds developed into shoots upon transfer to a regeneration medium without AgNO3 and AVG. The promotive effect of AVG on shoot regeneration was reversed by exogenous application of 20 mumol/L 2-chloroethylphosphonic acid (CEPA), an ethylene releasing compound. On the other hand, shoot regeneration stimulated by AgNO3 was relatively less affected by CEPA. Regenerated shoots were rooted in half-strength MS medium (1/2 MS) containing 0.54 mumol/L NAA. The well rooted plantlets were acclimatized and eventually established in soil.  相似文献   

8.
The four Helianthus annuus (sunflower) inbred lines examined showed different abilities to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and different morphological responses to exogenous ACC, however, ACC had no effect on precocious flowering. The greatest effect of ACC was seen with inbred SS405B where it suppressed shoot growth and induced hypocotyl enlargement and callus induction. The greatest response did not correlate with the highest ethylene production. Although each inbred responded differently, callus induction and hypocotyl enlargement observed in hypocotyl segments treated with naphthalene acetic acid and benzyladenine could be partially explained as ethylene-mediated effects of the two hormones. It is suggested that inbred differences could be due to different endogenous hormone levels and/or different sensitivities to them.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - NAA naphthalene acetic acid  相似文献   

9.
Previous researchers found that formation and function of nitrogen-fixing nodules on legume roots were severely inhibited by addition of exogenous ethylene. Nodule formation by Rhizobium meliloti on Medicago sativa was stimulated twofold when the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) was added with the inoculum. Stimulation of nodule formation by AVG showed a similar concentration dependence as inhibition of ethylene biosynthesis, suggesting that the primary action of AVG is the inhibition of ethylene biosynthesis. When AVG was added 2 to 3 days after inoculation, the number of nodules formed was still increased. On a per plant basis, however, the average nitrogen fixation was unchanged by AVG treatment and was independent of nodule number.  相似文献   

10.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

11.
Germination of witchweed ( Striga asiatica [L.] Kuntze), an important parasitic weed on several poaceous crops, is stimulated by several synthetic and natural compounds. We investigated the role of ethylene biosynthesis and action in cytokinin-induced germination. Conditioned Striga seeds treated with distilled water, 1-aminocyclopro-pane-1-carboxylic acid (ACC) or the cytokinins thidiazuron (TDZ), trans zeatin (TZ), benzyladenine (BA) and kinetin (KIN) produced little ethylene. Treatments with cytokinin-ACC combinations enhanced ethylene production. The relative order of activity of the cytokinins in elicitation of the phytohormone was TDZ > TZ > BA > KIN. Germination in response to distilled water and ACC treatments was negligible. Induction of germination by cytokinins varied from low (0%) to moderate (52%). Seeds treated with cytokinin-ACC combinations displayed high rates of germination. The observed germination was positively correlated (γ= 0. 8 and 0. 9) with ethylene production. Germination was reduced by silver thiosulphate (STS) and CoCl2, inhibitors of ethylene action and ACC oxidase, respectively. Aminoethoxyvi-nylglycine (AVG), an ACC-synthase inhibitor, reduced TDZ-induced Striga germination. However, the inhibitory effect of AVG was overcome by addition of ACC. The results are consistent with a model in which Striga germination and embryo growth are limited by low capacity of the seeds to oxidize ACC. The cytokinins promote ACC conversion into ethylene and consequent Striga germination by enhancing ACC oxidase activity and/or synthesis.  相似文献   

12.
Brassinosteroid (BR) stimulation of auxin-induced ethylene production and the particular step at which BR acts to promote such synthesis were studied in mung bean ( Vigna radiata L. Rwilcz cv. Berken) hypocotyl segments. Increasing concentrations of methionine alone and in combination with 3 μ M BR and 10 μ M IAA had a minimal effect on ethylene production. With increasing concentrations of 1-aminocyclopro-pane-1-carboxylic acid (ACC), however, ethylene production increased. BR or IAA further enhanced ethylene production with maximum rates occurring when these compounds were added together with ACC. The addition of 10 μ M CoCl2 in conjunction with BR and/or IAA resulted in 85–97% inhibition of ethylene production. When 20 μ M cycloheximide was used in conjunction with BR and/or IAA there was a complete inhibition of ethylene production. Total inhibition also resulted when 1.0 μ M aminoethoxy-vinylglycine (AVG) was used in combination with BR and/or IAA. AVG alone had no effect on ACC conversion to ethylene.  相似文献   

13.
The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S -adenosylmethionine (SAM), and 1-aminocyclopropane-1-carboxylic acid (ACC), of basal ethylene biosynthesis. Stress ethylene production induced by ozone, cadmium, or 2,4-dichlorophenoxyacetic acid was inhibited in hydroponically-grown soybean seedlings in a concentration-dependent manner by both AVG and CO2+. The ethylene intermediates evoked responses in intact seedlings similar to that described for endogenous ethylene production in isolated vegetative tissue. The addition of SAM to the hydroponic system relieved AVG inhibition of stress ethylene production. Feeding ACC to the seedlings resulted in increased ethylene production independent of stress application or prior AVG inhibition. Cobalt inhibition of stress ethylene production was relieved by increasing concentrations of ACC. A short lag period of 12–18 min was observed in stress ethylene production following a 30-min ozone exposure. Addition of cycloheximide partially inhibited ozone-induced ethylene production.
These results suggest a common pathway in whole plants for stress ethylene production and endogenous ethylene biosynthesis.  相似文献   

14.
Mechanical perturbation (MP) applied unilaterally to cucumber ( Cucumis sativus L.) hypocotyls induced thigmotropic curvature toward the stimulus. Gravitropic or phototropic curvature of the hypocotyl was inhibited by symmetrical application of MP to both sides of the hypocotyl. When both MP and IAA were unilaterally applied simultaneously to the same side, the hypocotyls always bent toward the MP stimulus, as in thigmotropism alone. Thus, the exogenous IAA did not control the direction of curvature. Aminoethoxyvinyl glycine (AVG) blocked thigmotropism as well as gravitropism and phototropism, but promoted IAA-induced curvature. MP-stimulated ethylene evolution peaked about 4 h after MP, followed by a peak of thigmotropic curvature. For all tropisms more ethylene evolved from the stimulated side than from the other side of the hypocotyls. MP-induced ethylene acting as a growth inhibitor, auxin-transport inhibitor, and/or modulator of tissue sensitivity to auxin, may be involved in thigmotropism and MP-induced inhibition of various tropisms. Ethylene produced as a result of MP was not affected by the removal of cotyledons. This MP-induced ethylene was additive to that of phototropically or gravitropically stimulated ethylene.  相似文献   

15.
The role of endogenous ethylene during germination of non-dormant seeds of Amaranthus caudatus L. was investigated. The seeds readily germinated in water and darkness at 24°C. Application of ethylene or of its precursor I-aminocyclopropane-I-carboxylic acid (ACC) slightly increased the rate of germination. Both compounds effectively antagonized osmotic inhibition by polyethyleneglycol. Application of aminoethoxyvinylglycine (AVG) reduced ethylene production by 90% but did not inhibit germination. However, germination was inhibited by 2,5-norbornadiene, a competitive inhibitor of ethylene action. This inhibition was counteracted by ethylene, ethephon or ACC and enforced by AVG. It is concluded that the action of endogenous ethylene is an indispensable factor during germination of non-dormant seeds of A. caudatus. Ethylene action is required from the start of imbibition on. In water, low levels of endogenous ethylene are sufficient for this action. PEG increased the ethylene requirement considerably.  相似文献   

16.
Culturing the hypocotyl explants from 7-day-old; light-grown seedlings of sunflower (Helianthus annuus L. ) on auxin-supplemented MS medium leads to a marked stimulation in callus induction and root initiation. NAA proved more effective than IAA for both responses. Experiments employing ethylene precursors (methionine and ACC) and action Inhibitor (AgNO3) revealed a significant role of endogenous ethylene levels in auxin-induced rooting. The auxin-ethylene interaction in root morphogenesis is accompanied with specific changes in anodic peroxidase isozymes.  相似文献   

17.
The auxins indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) stimulated ethylene production from gametophytes of the fern Pteridium aquilinum (L.) Kuhn. var. latiusculum (Desv) underw. ex Heller and sporophytes of the ferns Matteuccia struthiopteris (L.)Todaro and Polystichum munitum (Kaulf.) Presl. Treatment with Co2+ or l -α -(2-aminoethoxyvinyl)-glycine (AVG) eleminated or significantly reduced the stimulatory effects of IAA. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) resulted in significantly greater rates of ethylene production from all tissues tested. Based on their response to auxin, ACC, AVG and Co2+, the ethylene biosynthetic pathway in these three lower vascular plants appears similar to that existing in angiosperms.  相似文献   

18.
All three experimental compounds induced, after two sprays,the development of staminate flowers in otherwise strictly gynoeciouscucumbers. Silver nitrate and aminoethoxyvinyl glycine (AVG)also induced perfect flowers and the appearance of multiplepistillate and/or perfect buds on each node. Gibberellin (A4+7) had no effect on ethylene evolution, silvernitrate increased it, and AVG drastically reduced it. Thesedifferences between the three compounds indicate different mechanismsfor the male-enhancing effects. Inhibition of ethylene biosynthesisby AVG and inhibition of its action and/or metabolism by silvernitrate, leading to a decrease in endogenous ethylene activityand thus to an enhanced male tendency. The GA effect does notseem to involve a change in ethylene content, and thereforemust be through another, yet unknown, mechanism. (Received August 9, 1979; )  相似文献   

19.
Khan AA  Huang XL 《Plant physiology》1988,87(4):847-852
Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.  相似文献   

20.
Role of ethylene in auxin-induced flower bud formation in tobacco explants   总被引:1,自引:0,他引:1  
The effect of ethytene on in vitro flower bud formation in thin-layer explants from tobacco pendicels ( Nicotiana tabacum L. cv. Samsun) was studied Endogenous ethylene production was stimulated by l-minocyclopropanc-l-carhoxylic acid (ACT), and inhibited by aminoethoxyviny lglycine (AVG). resulting in higher and lower ethylene accumulation. respectively. In the presence of an elevated ethylene concentration, the number of flower buds formed after 7 days of culture in explants was increased, compared with the control. Treatment with AVG or with AgNO3 which blocks ethylene action resulted in decreased bud numbers after 7 days of culture. A different effect of ethylene was visible after 14 days of culture, when regeneration was complete. Treatment with AgNO3 led to more bud regeneration, and increasing ethylene concentrations to lower bud numbers. The endogenous production of ethylene was enhanced by high concentrations of 1-naphthaleneacetic acid (NAA).
The inhibitory effect of applied ethylene was almost 100% in explants cultured at low concentrations of NAA (below 1 μ M ). but hardly visible at high concentrations (4.5 μ M ). As a consequence, the optimal NAA concentration shifted to a higher value in the presence of ethylene. These results are interpreted as a reduction in tissue sensitivity to auxin and in regenerative capability by ethylene. The effect of ethylene on auxin action is not exerted at the level of hormone concentration. Neither NAA uptake nor conversion to conjugates was effected by ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号