首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
O. Schieder 《Planta》1977,137(3):253-257
Following fusion between protoplasts from two different chlorophyll-deficient diploid mutants of Datura innoxia Mill. it was possible to select 33 green hybrid calli on agar culture medium. Half of the somatic hybrids gave rise to leaves and some to shoots. The chromosome number of 20 somatic hybrids was determined: five were tetraploid, eight hexaploid, three octoploid, and four showed an aneuploid chromosome number. After transfer of the shoots of the five tetraploid hybrids to soil they developed roots. In control experiments in which protoplasts of the two mutants were cultured either as a mixture without being treated with the fusion agent, or cultured separately, no green callus could be obtained. Similar experiments involving protoplasts from one chlorophyll-deficient mutant of Datura innoxia, on the one hand, and those from similar mutants of Nicotiana sylvestris Spegazz. et Comes and Petunia hybrida, on the other, yielded no green somatic hybrid although hybrid protoplasts could be detected.  相似文献   

2.
Summary Following fusion of protoplasts from a chlorophyll-deficient diploid mutant of Datura innoxia Mill. which can be regenerated to shoots, with green wild-type protoplasts of Datura stramonium L. var. tatula L. which can not, it was possible to isolate 49 green hybrid calli on agar medium. Most of these somatic hybrid calli gave rise to leaves and shoots. The chromosome numbers of the somatic hybrids were determined: 15 were tetraploid (amphidiploid), 24 hexaploid, and the other showed an aneuploid chromosome number.In a similar experiment protoplasts of the Datura innoxia mutant were fused with green wild-type protoplasts of Datura discolor Bernh. which are also not able to be regenerated, four green calli were obtained from which leaves and shoots developed after some transfers on agar medium. Three of them showed the amphidiploid (48) chromosome number, whereas one possessed an aneuploid number of 46 chromosomes.After transfer of rooted shoots to soil flowering plants could be obtained in both combinations. The habits of the somatic hybrids in both combinations were intermediate between the habits of the respective parental plants.Dedicated to my father, Prof. Dr. Theodor Schieder, on the occasion of his 70th birthday.  相似文献   

3.
Using two strains of Metarhizium anisopliae var. minor designated E6 and RJ from different origins, inter-strain crosses were readily performed by orthodox methods from mutants of strain E6 through the parasexual cycle. However, in most cases crosses between mutants of strain RJ or between RJ and E6 mutant strains were not achieved. Protoplast fusion was carried out in an attempt to cross such strains. Protoplasts were obtained after treatment of mycelium with lytic enzymes using 0.7 m KCl as osmotic stabilizer. Regeneration frequency varied from 1.2 to 3.0%. Poly (tethylene glycol) was used for the fusion of protoplasts and fusion frequencies varied from 0.9 to 44.1 in 105 protoplasts according to the cross. Sectors which emerge from fusion products were analysed and recombinants were obtained even from crosses between mutant strains which could not be crossed by hyphal fusion. In this way protoplast fusion proved to be a valuable tool for further studies of genetics and breeding of Metarhizium anisopliae.  相似文献   

4.
We have identified five reiteration mutants from serially-propagated, defective stocks of Simian Virus 40 and DAR virus (an SV403 variant of human origin). The genomes of these mutants contain tandem repeats of specific segments of the SV40 genome. In order to propagate individual reiteration mutants, the monomer DNA segments from the mutant genomes are separated from wild-type SV40 DNA after cleavage by certain bacterial restriction endonucleases which produce short cohesive termini at their cleavage sites. These monomer segments, which are one-third, one-fourth, or one-fifth the size of wild-type SV40 DNA, are then circularized in vitro using bacteriophage T4 polynucleotide ligase and used to infect African green monkey kidney cells in the presence of wild-type or temperature-sensitive mutant DNAs as helpers. While wild-type SV40 and late temperature-sensitive mutants can serve as helpers in the replication and amplification of these minicircular DNAs, early temperature-sensitive mutant genomes are unable to do so at the nonpermissive temperature. The minicircular DNAs are amplified in vivo through an arithmetic series of oligomers. Encapsidation of reiterated molecules between 70 and 100% the size of wild-type SV40 DNA is observed, although reiterated viral DNA molecules much larger than unit size are formed in vivo.  相似文献   

5.
Summary The combination in the nuclear genome of a dominant resistance marker (to select against unfused wild-type cells) and a recessive deficiency marker (to select against unfused mutant cells) in a cell line should provide a system for selecting fusion hybrids between the mutant line and any wild-type line. To test this idea, we fused protoplasts from a non-morphogenic cell line of Nicotiana tabacum which was kanamycin resistant (by transformation) and deficient in nitrate reductase (NR-K+) with protoplasts from N. tabacum cv. Petit Havana clone SR1, which provided resistance against streptomycin as an additional selectable marker (NR+K-SR+). Putative hybrids were selected using a culture medium containing no available reduced nitrogen source and 50 mg/l kanamycin sulphate. After regeneration into plants, the hybrid character was demonstrated from: (i) the morphological variation of the regenerants; (ii) the chromosome number; (iii) the ability to grow on medium without a reduced nitrogen source and containing kanamycin sulphate at 50 mg/l; (iv) the presence of nitrate reductase activity; (v) the presence of the gene coding for neomycin phosphotransferase, which provides resistance to kanamycin sulphate; (vi) callus formation from leaves on medium containing 1 g/l streptomycin or 50 mg/l kanamycin sulphate; (vii) F1 plants containing nitrate reductase and the gene for neomycin phosphotransferase. Fusions between the mutant cell line (NR-K+) and three wild-type tobacco species and subsequent cultivation on medium containing no available nitrogen source but 50 mg/l kanamycin sulphate resulted in callus formation with all combinations, while hybrid plants were only regenerated when N. sylvestris was the fusion partner.  相似文献   

6.
Mutants of simian virus 40 (SV40) with base substitutions at or near the origin of replication of the viral genome have been constructed by bisulfite mutagenesis at the BglI restriction site of SV40 DNA, followed by transfection of cells with the BglI-resistant (BglIr) DNA so generated. Based on plaque morphology at different temperatures, the resulting BglIr mutants could be classified into four-groups. Class I mutants (designated ar for “altered restriction”) were indistinguishable from wild-type SV40; class II mutants (designated shp for “sharp plaque”) produced small, sharp-edged plaques; class III mutants (designated sp for “small plaque”) produced small plaques at 32 °C, 37 °C and 40 °C; and class IV mutants (designated cs for “cold sensitive”) produced small plaques at 32 °C and wild-type plaques at 37 °C and 40 °C. That the altered plaque morphology of sp and cs mutants was related to mutation at the BglI restriction site was demonstrated by co-reversion to wild-type of the plaque phenotype and BglI sensitivity. The nucleotide sequence around the original BglI site was determined in the DNA from one mutant of each class. In each case a different base-pair substitution was found, at a site outside sequences coding for SV40 proteins. When rates of replication of mutant DNAs were measured during productive infection, ar mutant DNA was synthesized at a rate comparable to that of wild-type SV40 DNA, shp mutant DNA was made at a rate exceeding that of wild-type, sp mutant DNA was synthesized at a lower rate than that of wild type. and cs mutant DNA synthesis was reduced at 32 °C, but about the same as the wild-type rate at 40 °C. These patterns of mutant DNA synthesis were unaltered in cells co-infected with mutant and wild-type virus, i.e. the defects in DNA synthesis were not trans-complementable. We conclude that the defective mutants have single base-pair changes in a cis element that determines the rate of viral DNA replication, presumably within the origin signal itself.  相似文献   

7.
Summary Ten different mutants with altered pigment patterns were isolated following X-irradiation of approximately 105 haploid protoplasts of Datura innoxia Mill. Seven of the selected strains gave rise to shoots and 3 to leaves only. The mutants were selected from light green or white calli, which had developed 4 weeks after transfer of developing cell clusters onto B5 agar medium containing 0.5 mg/l BAP (Gamborg et al., 1968). Of the 10 mutant strains 5 were light green, two were yellow, one was pale yellow and one was white. One additional strain does not possess anthocyanin in its stems; a feature chracteristic of the wildtype is the possession of anthocyanin. This strain is able to grow in soil and has now flowered. None of the mutants obtained is haploid. Nine are diploid and the other is tetraploid. The chlorophyll deficient strains can be propagated on B5 agar medium supplemented with higher concentration of sucrose than normally required for the growth of the wild-type.  相似文献   

8.
Regenerating protoplasts were obtained from mycelial culture of the mushroom Volvariella volvacea by the action of the lytic enzyme Novozym 234 in the presence of 0.01 M phosphate buffer (pH 6.0) containing 0.6 M NaCl. Regeneration was found to be poor in liquid medium, but more than 50% regeneration was achieved on solid 2% agar medium overlaid with 0.5% agar. Protoplasts of V. volvacea were found to be highly sensitive to the killing action of both UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine. However, no morphological or auxotrophic mutants could be obtained from protoplasts by chemical mutagenesis. Four types of morphological mutants and one auxotrophic (adenine-negative) mutant were obtained from UV-irradiated protoplasts. The adenine-negative mutant of V. volvacea was found to be stable, not losing auxotrophy on repeated subculture.  相似文献   

9.
Changes in the amount of oligopeptide binding protein (OppA) in spontaneous kanamycin-resistant mutants of Escherichia coli were investigated. Among 20 colonies obtained from 108 cells cultured in the presence of 20 μg of kanamycin/ml, 1 colony had no detectable OppA and 7 colonies were mutants with reduced amounts of OppA. Sensitivity of wild-type cells to kanamycin increased slightly by transformation of the oppA gene, but the sensitivity of the mutants increased greatly by the transformation. A mutant with no OppA was found to be a nonsense mutant of the oppA gene at amino acid position 166. In a mutant having a reduced level of OppA, the reduction was due to the decrease in OppA synthesis at the translational level. These mutants were also resistant to other aminoglycoside antibiotics, including streptomycin, neomycin, and isepamicin. Isepamicin uptake activities decreased greatly in these two kinds of mutants. The results support the proposition that aminoglycoside antibiotics are transported into cells by the oligopeptide transport system, and that transport is an important factor for spontaneous resistance to aminoglycoside antibiotics.  相似文献   

10.
Using immunoselection with an H-2Kk-specific monoclonal antibody following mutagenesis on an (H-2 k/H-2d) F1 cell line we have obtained variants that do not react with the selecting monoclonal antibody but continue to react with other monoclonal antibodies directed against the same gene product. The mutants fall into two classes based on their serological profile. This phenotype is suggestive of a structural mutation in the selected gene. If the genetic change involved is a point mutation (as opposed to a deletion), one should be able to obtain revertants. Using the fluorescence-activated cell sorter, we have been able to obtain from one of the monoclonal-antibody-nonseactive mutants cells that do bind the selecting antibody. In order to prove that the presumptive revertant is not a contaminant wild-type cell that inadvertantly got mixed into the resistant mutant, we first introduced an outside marker, resistance to the purine analogue 2-amino-6-mercaptopurine (6-thioguanine), into the monoclonal-antibody-resistant mutant. The revertants obtained using the cell sorter continue to express the nonselective phenotype of resistance to 6-thioguanine, showing that they are not wild-type cells. In addition, their serological characteristics are different from those of either the wild-type cells or the hybrid oma-resistant mutants from which they were derived. Based on the serological analyses, it would seem that we have isolated at least three variant forms of the H-2Kk-gene product.  相似文献   

11.
Pairs of Rhizobium meliloti nod mutants were co-inoculated onto alfalfa (Medicago saliva L.) roots to determine whether one nod mutant could correct, in situ, for defects in nodule initiation of another nod mutant. None of the Tn5 or nod deletion mutants were able to help each other form nodules when co-inoculated together in the absence of the wild-type. However, as previously observed, individual nod mutants significantly increased nodule initiation by low dosages of co-inoculated wild-type cells. Thus, nod mutants do produce certain signal substances or other factors which overcome limits to nodule initiation by the wild-type. When pairs of nod mutants were co-inoculated together with the wild-type, the stimulation of nodulation provided by individual nodABC mutants was not additive. However, clearly additive or synergistic stimulation was observed between pairs of mutants with a defective host-specificity gene (nodE, nodF, or nodH). Each pair of host-specificity mutants stimulated first nodule formation to nearly the maximum levels obtainable with high dosages of the wild-type. Mutant bacteria were recovered from only about 10% of these nodules, whereas the co-inoculated wild-type was present in all these nodules and substantially outnumbered mutant bacteria in nodules occupied by both. Thus, these mutant co-inoculants appeared to help their parent in situ even though they could not help each other. Sterile culture filtrates from wild-type cells stimulated nodule initiation by low dosages of the wild-type, but only when a host-specificity mutant was also present. The results from our studies seem consistent with the possibility that pairs of host-specificity mutants are able to help the wild-type initiate nodule formation by sustained production of complementary signals required for induction of symbiotic host responses.  相似文献   

12.
Mitochondrial control of sugar utilization in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
H R Mahler  D Wilkie 《Plasmid》1978,1(2):125-133
When a number of wild-type strains of Saccharomyces cerevisiae—all capable of utilizing the three sugars galactose, maltose, and α-methyl-d-glucoside for growth—were converted by ethidium bromide (EtdBr) mutagenesis to stable cytoplasmic petite (rho?) mutants, the latter lost the ability to grow on one or more of these sugars. The actual pattern of retention (or loss) or sugar utilization by these mutants depended on the wild-type strain, but was independent of the length of exposure to EtdBr during mutagenesis. This treatment varied from 0.5 to 24 h, by which time the majority of the mutants must have been of the mitochondrial (mt) DNA-deficient rho0 type. Furthermore, with one exception—involving the ability of one set of mutants to utilize α-methyl-glucoside—all rho? mutants derived from the same wild type exhibited the same, discrete pattern of sugar utilization. Respiration-deficient mutants with defined lesions in their mtDNA (mit? mutants) exhibited the same pattern of sugar utilization as did the petite mutants of the same strain. Diploid petite strains also exhibited discrete, but less stringent, patterns of sugar utilization. For any one genotype this pattern was identical whether the mutant was generated by crossing two haploid rho? strains, themselves derived by EtdBr mutagenesis, or by EtdBr mutagenesis of the diploid obtained from a haploid wild-type × wild-type cross. In such mutant diploids the sugar-positive phenotype was usually dominant, but there were indications in some instances of modulation of this effect by virtue of nuclear gene interactions. Various respiration-deficient mutants incapable of utilizing α-methylglucoside also were unable to form α-glucosidase, but were able to do so after being rendered permeable by exposure to dimethyl sulfoxide. Arguments are advanced that respiring mitochondria generate an entity—probably not directly related to ATP production—required for the expression of nuclear genes or their products, some of which may be necessary for plasma membrane function.  相似文献   

13.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

14.
Mutagenized E. coli B/r cells were subjected to a procedure designed to select mutants temperature-sensitive for initiation of deoxyribonucleic acid (DNA) replication. Seventeen mutants exhibiting limited residual DNA synthesis at 42 C were obtained and the dna sites were mapped genetically. Sixteen of the sites map near dnaA, dnaB, and dnaC. One mutant (dna-208) maps in a new location between the trp and his genes. We propose to call this mutant dnaI208. In complementation experiments dnaC+ and dnaI+ were dominant to dnaC and dnaI alleles, respectively. However, dnaA was dominant to the wild-type allele dnaA+. All dnaA mutants and four out of six dnaC mutants could be suppressed by F factor integration. The pattern of suppression was specific for each mutant.  相似文献   

15.
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Two herbicide-resistant mutants of the unicellular cyanobacterium, Anacystis nidulans R2, were obtained by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. These mutants, A. nidulans R2D1 and R2D2, were selected by growth of mutagenized cells in the presence of 10?6 M and 10?5 M 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), respectively. Both were found to be cross-resistant to 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) and 2-n-heptyl-4-hydroxyquinoline-n-oxide (HQNO) by measurement of Photosystem II activity in the presence of the inhibitors. The DCMU-resistance trait from each mutant was transferred to a wild-type genetic background by DNA-mediated transformation of A. nidulans cells. The two resulting transformants, A. nidulans R2D1-X1 and R2D2-X1, were similar to the original mutants with respect to DCMU- and HQNO-resistance. However, both exhibited increased sensitivity to atrazine relative to the mutants from which they were derived. Polyacrylamide gel electrophoretic analysis revealed that the mutants and transformants were deficient in a 34 kDa, surface-exposed polypeptide which was present in the wild-type strain; the transformants exhibited a new polypeptide of 35.5 kDa which was also highly surface-exposed.  相似文献   

17.
A procedure has been devised to isolate mutants of Bacillus subtilis with structurally defective membranes. The procedure used to screen for the mutants involved comparison of the stability of protoplasts of the mutant with those of the wild type in a medium of sufficient osmotic strength to stabilize wild-type protoplasts. Mutagenized cells were grown as clones on agar plates, and then replicated onto plates containing 0.5 m lactose, which is sufficient to stabilize wild-type protoplasts. The colonies on the lactose-containing plates were then treated with lysozyme to convert the cells to protoplasts. Colonies of wild-type protoplasts remained opaque; however, colonies of mutant protoplasts lysed and became clear. Twenty-nine osmotically fragile mutants were isolated in this manner; the membranes of several mutants were found to contain alterations in the composition of their proteins or lipids.  相似文献   

18.
Alcohol dehydrogenase (alcohol: NAD oxidoreductase, E.C. 1.1.1.1.) mutants of Chinese hamster somatic cells were isolated as resistant to allyl alcohol (ALLR). The ALLR phenotypes of the mutant clones were reproducible with high fidelity and stable over long intervals of growth in the absence of the selecting drug. Several mutants, Adh-1, Adh-2, Adh-9 and Adh-13, resistant to allyl alcohol were characterized. They have between 15 and 40% of the alcohol dehydrogenase activity of the wild-type cell lines. Cell-cell hybridization experiments using Adh-1 and wild-type Chinese hamster cells indicate that resistance to allyl alcohol is recessive to the wild-type allele. This phenotype is therefore a useful marker to analyze gene segregation of somatic cell mutations and to study the expression of the genes involved in the metabolism of ethanol in mammalian cells.  相似文献   

19.
Cross-links between DNA and proteins were induced by formaldehyde treatment in yeast cells. This damage can be repaired by post-treatment incubation of cells or protoplasts in nutrient medium. This repair was observed for wild-type cells as well as for a UV-sensitive, excision-deficient mutant (rad1–3), also sensitive to the lethal effect of formaldehyde.  相似文献   

20.
Arrhenius kinetics of two mitochondrial enzymes, cytochrome oxidase and S-adenosylmethionine: Δ 24 sterol methyltransferase were analyzed in wild-type and sterol mutant strains of yeast. Temperature effects on the enzymes isolated from the ergosterol producing wild-type and nystatin resistant mutants (major sterol Δ8(9), 22 ergostadiene-3-β-ol) were compared. Transition temperatures were lower in both mutant strains compared to wild-type. Lipid analysis shows a relationship between sterol content and the temperature dependent transition phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号