首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An increasing number of studies report that functional divergence in duplicated genes is accompanied by gene expression changes, although the evolutionary mechanism behind this process remains unclear. Our genomic analysis on the yeast Saccharomyces cerevisiae shows that the number of shared regulatory motifs in the duplicates decreases with evolutionary time, whereas the total number of regulatory motifs remains unchanged. Moreover, genes with numerous paralogs in the yeast genome do not have especially low number of regulatory motifs. These findings indicate that degenerative complementation is not the sole mechanism behind expression divergence in yeast. Moreover, we found some evidence for the action of positive selection on cis-regulatory motifs after gene duplication. These results suggest that the evolution of functional novelty has a substantial role in yeast duplicate gene evolution.  相似文献   

2.
3.
BACKGROUND: Changes in developmental gene expression are central to phenotypic evolution, but the genetic mechanisms underlying these changes are not well understood. Interspecific differences in gene expression can arise from evolutionary changes in cis-regulatory DNA and/or in the expression of trans-acting regulatory proteins, but few case studies have distinguished between these mechanisms. Here, we compare the regulation of the yellow gene, which is required for melanization, among distantly related Drosophila species with different pigment patterns and determine the phenotypic effects of divergent Yellow expression. RESULTS: Yellow expression has diverged among D. melanogaster, D. subobscura, and D. virilis and, in all cases, correlates with the distribution of black melanin. Species-specific Yellow expression patterns were retained in D. melanogaster transformants carrying the D. subobscura and D. virilis yellow genes, indicating that sequence evolution within the yellow gene underlies the divergence of Yellow expression. Evolutionary changes in the activity of orthologous cis-regulatory elements are responsible for differences in abdominal Yellow expression; however, cis-regulatory element evolution is not the sole cause of divergent Yellow expression patterns. Transformation of the D. melanogaster yellow gene into D. virilis altered its expression pattern, indicating that trans-acting factors that regulate the D. melanogaster yellow gene have also diverged between these two species. Finally, we found that the phenotypic effects of evolutionary changes in Yellow expression depend on epistatic interactions with other genes. CONCLUSIONS: Evolutionary changes in Yellow expression correlate with divergent melanin patterns and are a result of evolution in both cis- and trans-regulation. These changes were likely necessary for the divergence of pigmentation, but evolutionary changes in other genes were also required.  相似文献   

4.
Abundant raw material for cis-regulatory evolution in humans   总被引:16,自引:0,他引:16  
  相似文献   

5.
6.
7.
Inomata N  Nakashima S 《Gene》2008,412(1-2):102-109
Evolution of the duplicated genes and regulation in gene expression is of great interest, especially in terms of adaptation. Molecular population genetic and evolutionary studies on the duplicated amylase genes of Drosophila species have suggested that their 5'-flanking (cis-regulatory) regions play an important role in evolution of these genes. For better understanding of evolution of the duplicated amylase genes and gene expression, we studied functional significance of the Amy1 gene of Drosophila kikkawai using in vitro deletion mutagenesis followed by P-element-mediated germline transformation. We found that a 1.6-kb of the 5'-flanking region can produce strikingly higher level of larval amylase activity on starch food compared with that on glucose food. We found two cis-regulatory elements, which increase larval amylase activity on starch food. We also found a larval cis-regulatory element, which responds to the food difference. This food-response element is necessary for the function of the element increasing larval activity on starch food. A 5-bp deletion in a putative GRE caused high amylase activity, indicating a cis-regulatory element decreasing amylase activity. These cis-regulatory elements identified in the 5'-flanking region could be the targets of natural selection.  相似文献   

8.
9.
Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change.  相似文献   

10.
Simpson P  Marcellini S 《Heredity》2006,97(3):148-156
A long-standing problem in evolutionary biology is how genetic variation arises within populations and evolves to make species anatomically different. Many of the morphological differences in body plans between animal groups are thought to result from changes in gene expression during development. The rules governing the structure and evolution of cis-regulatory gene sequences are unknown, however, and the evolution of traits between closely related species remains relatively unexplored at a molecular level. To study the evolution of gene regulation, it is necessary to find a tractable trait that varies between species and for which the genetic regulation is well known in at least one of the species. The stereotyped, two-dimensional pattern of bristles on the thorax of Drosophila has been intensively investigated and is due to a precise spatial expression of proneural genes. Other species of flies have different bristle patterns and so comparisons between them provide a good paradigm for the study of changes in gene regulation. Here, we review the current state of understanding of these changes.  相似文献   

11.
de Meaux J  Pop A  Mitchell-Olds T 《Genetics》2006,174(4):2181-2202
The contribution of cis-regulation to adaptive evolutionary change is believed to be essential, yet little is known about the evolutionary rules that govern regulatory sequences. Here, we characterize the short-term evolutionary dynamics of a cis-regulatory region within and among two closely related species, A. lyrata and A. halleri, and compare our findings to A. thaliana. We focused on the cis-regulatory region of chalcone synthase (CHS), a key enzyme involved in the synthesis of plant secondary metabolites. We observed patterns of nucleotide diversity that differ among species but do not depart from neutral expectations. Using intra- and interspecific F1 progeny, we have evaluated functional cis-regulatory variation in response to light and herbivory, environmental cues, which are known to induce CHS expression. We find that substantial cis-regulatory variation segregates within and among populations as well as between species, some of which results from interspecific genetic introgression. We further demonstrate that, in A. thaliana, CHS cis-regulation in response to herbivory is greater than in A. lyrata or A. halleri. Our work indicates that the evolutionary dynamics of a cis-regulatory region is characterized by pervasive functional variation, achieved mostly by modification of response modules to one but not all environmental cues. Our study did not detect the footprint of selection on this variation.  相似文献   

12.
Bomblies K  Doebley JF 《Genetics》2006,172(1):519-531
Phenotypic variation on which selection can act during evolution may be caused by variation in activity level of developmental regulatory genes. In many cases, however, such genes affect multiple traits. This situation can lead to co-evolution of traits, or evolutionary constraint if some pleiotropic effects are detrimental. Here, we present an analysis of quantitative traits associated with gene copy number of two important maize regulatory genes, the duplicate FLORICAULA/LEAFY orthologs zfl1 and zfl2. We found statistically significant associations between several quantitative traits and copy number of both zfl genes in several maize genetic backgrounds. Despite overlap in traits associated with these duplicate genes, zfl1 showed stronger associations with flowering time, while zfl2 associated more strongly with branching and inflorescence structure traits, suggesting some divergence of function. Since zfl2 associates with quantitative variation for ear rank and also maps near a quantitative trait locus (QTL) on chromosome 2 controlling ear rank differences between maize and teosinte, we tested whether zfl2 might have been involved in the evolution of this trait using a QTL complementation test. The results suggest that zfl2 activity is important for the QTL effect, supporting zfl2 as a candidate gene for a role in morphological evolution of maize.  相似文献   

13.
Hu XH  Wang MH  Tan T  Li JR  Yang H  Leach L  Zhang RM  Luo ZW 《Genetics》2007,175(3):1479-1487
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.  相似文献   

14.
15.
Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection.  相似文献   

16.
Surprisingly, few studies have described evolutionary rate variation among plant nuclear genes, with little investigation of the causes of rate variation. Here, we describe evolutionary rates for 11,492 ortholog pairs between Arabidopsis thaliana and A. lyrata and investigate possible contributors to rate variation among these genes. Rates of evolution at synonymous sites vary along chromosomes, suggesting that mutation rates vary on genomic scales, perhaps as a function of recombination rate. Rates of evolution at nonsynonymous sites correlate most strongly with expression patterns, but they also vary as to whether a gene is duplicated and retained after a whole-genome duplication (WGD) event. WGD genes evolve more slowly, on average, than nonduplicated genes and non-WGD duplicates. We hypothesize that levels and patterns of expression are not only the major determinants that explain nonsynonymous rate variation among genes but also a critical determinant of gene retention after duplication.  相似文献   

17.
We report the results of an analysis of naturally occurring cis-regulatory variation within and between two families of the copia Drosophila long terminal repeat (LTR) retrotransposon. The copia 5′ LTR and adjacent untranslated leader region (ULR) consists of a number of well-characterized sequence motifs which play a role in regulating expression of the element. In order to understand the evolutionary forces which may be responsible for generating and maintaining copia regulatory sequence variation, we have quantified levels of naturally occurring copia LTR-ULR nucleotide variation and subjected the data to a series of tests of neutrality. Our analysis indicates that the copia LTR-ULR has been subject to negative purifying selection within families and positive adaptive selection between families. We discuss these findings with respect to the regulatory evolution of retrotransposons and the phenomenon of interelement selection. Received: 5 February 1998 / Accepted: 14 May 1998  相似文献   

18.
19.
Organismic evolution requires that variation at distinct hierarchical levels and attributes be coherently integrated, often in the face of disparate environmental and genetic pressures. A central part of the evolutionary analysis of biological systems remains to decipher the causal connections between organism-wide (or genome-wide) attributes (e.g., mRNA abundance, protein length, codon bias, recombination rate, genomic position, mutation rate, etc) as well as their role-together with mutation, selection, and genetic drift-in shaping patterns of evolutionary variation in any of the attributes themselves. Here we combine genome-wide evolutionary analysis of protein and gene expression data to highlight fundamental relationships among genomic attributes and their associations with the evolution of both protein sequences and gene expression levels. Our results show that protein divergence is positively coupled with both gene expression polymorphism and divergence. We show moreover that although the number of protein-protein interactions in Drosophila is negatively associated with protein divergence as well as gene expression polymorphism and divergence, protein-protein interactions cannot account for the observed coupling between regulatory and structural evolution. Furthermore, we show that proteins with higher rates of amino acid substitutions tend to have larger sizes and tend to be expressed at lower mRNA abundances, whereas genes with higher levels of gene expression divergence and polymorphism tend to have shorter sizes and tend to be expressed at higher mRNA abundances. Finally, we show that protein length is negatively associated with both number of protein-protein interactions and mRNA abundance and that interacting proteins in Drosophila show similar amounts of divergence. We suggest that protein sequences and gene expression are subjected to similar evolutionary dynamics, possibly because of similarity in the fitness effect (i.e., strength of stabilizing selection) of disruptions in a gene's protein sequence or its mRNA expression. We conclude that, as more and better data accumulate, understanding the causal connections among biological traits and how they are integrated over time to constrain or promote structural and regulatory evolution may finally become possible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号