首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinoic acid (RA) is a well-known regulator of chondrocyte phenotype. RA inhibits chondrogenic differentiation of mesenchymal cells and also causes loss of differentiated chondrocyte phenotype. The present study investigated the mechanisms underlying RA regulation of chondrogenesis. RA treatment in chondrifying mesenchymal cells did not affect precartilage condensation, but blocked progression from precartilage condensation to cartilage nodule formation. This inhibitory effect of RA was independent of protein kinase C and extracellular signal-regulated protein kinase, which are positive and negative regulators of cartilage nodule formation, respectively. The progression from precartilage condensation to cartilage nodule requires downregulation of N-cadherin expression. However, RA treatment caused sustained expression of N-cadherin and its associated proteins including alpha- and beta-catenin suggesting that modulation of expression of these molecules is associated with RA-induced inhibition of chondrogenesis. This hypothesis was supported by the observation that disruption of the actin cytoskeleton by cytochalasin D (CD) blocks RA-induced sustained expression of cell adhesion molecules and overcomes RA-induced inhibition of chondrogenesis. Taken together, our results suggest RA inhibits chondrogenesis by stabilizing cell-to-cell interactions at the post-precartilage condensation stage.  相似文献   

2.
Insulin receptor-independent activation of the insulin signal transduction cascade in insulin-responsive target cells by phosphoinositolglycans (PIG) and PIG-peptides (PIG-P) is accompanied by redistribution of glycosylphosphatidylinositol (GPI)-anchored plasma membrane proteins (GPI proteins) and dually acylated nonreceptor tyrosine kinases from detergent/carbonate-resistant glycolipid-enriched plasma membrane raft domains of high-cholesterol content (hcDIGs) to rafts of lower cholesterol content (lcDIGs). Here we studied the nature and localization of the primary target of PIG(-P) in isolated rat adipocytes. Radiolabeled PIG-P (Tyr-Cys-Asn-NH-(CH(2))(2)-O-PO(OH)O-6Manalpha1(Manalpha1-2)-2Manalpha1-6Manalpha1-4GluN1-6Ino-1,2-(cyclic)-phosphate) prepared by chemical synthesis or a radiolabeled lipolytically cleaved GPI protein from Saccharomyces cerevisiae, which harbors the PIG-P moiety, bind to isolated hcDIGs but not to lcDIGs. Binding is saturable and abolished by pretreatment of intact adipocytes with trypsin followed by NaCl or with N-ethylmaleimide, indicating specific interaction of PIG-P with a cell surface protein. A 115-kDa polypeptide released from the cell surface by the trypsin/NaCl-treatment is labeled by [(14)C]N-ethylmaleimide. The labeling is diminished upon incubation of adipocytes with PIG-P which can be explained by direct binding of PIG-P to the 115-kDa protein and concomitant loss of its accessibility to N-ethylmaleimide. Binding of PIG-P to hcDIGs is considerably increased after pretreatment of adipocytes with (glycosyl)phosphatidylinositol-specific phospholipases compatible with lipolytic removal of endogenous ligands, such as GPI proteins/lipids. These data demonstrate that in rat adipocytes synthetic PIG(-P) as well as lipolytically cleaved GPI proteins interact specifically with hcDIGs. The interaction depends on the presence of a trypsin/NaCl/NEM-sensitive 115-kDa protein located at hcDIGs which thus represents a candidate for a binding protein for exogenous insulin-mimetic PIG(-P) and possibly endogenous GPI proteins/lipids.  相似文献   

3.
There is now abundant evidence that the intracellular concentration of the EGFR and many other receptors for peptide hormones and growth factors is important for the temporal and spatial regulation of cell signaling. Spatial control is achieved by the selective compartmentalization of signaling components into endosomes. However further control may be effected by sequestration into sub‐domains within a given organelle such as membrane rafts which are dynamic, nano scale structures rich in cholesterol and sphingolipids. Current data suggest the presence of EGFRs in non‐caveolae membrane rafts. High doses of EGF seem to promote the sorting of EGFR to late endosomes through a raft/cholesterol dependant mechanism, implicating them in EGFR degradation. However our work and that of others has led us to propose a model in which membrane rafts in late endosomes sequester highly active EGFR leading to the recruitment and activation of MAPK in this compartment. J. Cell. Biochem. 109: 1103–1108, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
N-cadherin is not typically expressed by epithelial cells. However, it is detected in breast cancers and increases tumor cell migration and invasion in vitro. To explore its misexpression, we generated transgenic mice with N-cadherin in the mammary epithelium. Mammary glands appeared normal and no tumors arose spontaneously. To investigate N-cadherin misexpression in mammary tumors, neu was overexpressed through breeding. Tumors developed in +/neu and N-cadherin/neu mice, although few tumors in bitransgenic mice expressed N-cadherin, and they did not differ from N-cadherin-negative tumors.  相似文献   

5.
6.
Nephrogenesis starts with the reciprocal induction of two embryonically distinct analages, metanephric mesenchyme and ureteric bud. This complex process requires the refined and coordinated expression of numerous developmental genes, such as inv. Mice that are homozygous for a mutation in the inv gene (inv/inv) develop renal cysts resembling autosomal-recessive polycystic kidney disease. The gene locus containing inv has been proposed to serve as a common modifier for some human and rodent polycystic kidney disease phenotypes. We generated polyclonal antibodies to inversin to study its subcellular distribution, potential binding partners, and functional aspects in cultured murine proximal tubule cells. A 125-kDa inversin protein isoform was found at cell-cell junctions. Two inversin isoforms, 140- and 90-kDa, were identified in the nuclear and perinuclear compartments. Plasma membrane allocation of inversin is dependent upon cell-cell contacts and was redistributed when cell adhesion was disrupted after incubation of the cell monolayer with low-calcium/EGTA medium. We further show that the membrane-associated 125-kDa inversin forms a complex with N-cadherin and the catenins. The 90-kDa nuclear inversin complexes with beta-catenin. These findings indicate that the inv gene product functions in several cellular compartments, including the nucleus and cell-cell adhesion sites.  相似文献   

7.
8.
The composition of membrane rafts (cholesterol/sphingolipid-rich domains) cannot be fully deduced from the analysis of a detergent-resistant membrane fraction after solubilization in Triton X-100 at 4°C. It is hypothesized that the membrane curvature-dependent lateral distribution of membrane components affects their solubilization. The stomatocytogenic, Triton X-100, cannot effectively solubilize membrane components, especially with regard to the outward membrane curvature.  相似文献   

9.
10.
Green tea has been reported as potential dietary protection against numerous cancers and has been shown to have activity in bladder tumor inhibition in different animal models. The goal of this study was to examine the effects of (-)-epigallocatechin gallate (EGCG-the major phytochemical in green tea) on growth inhibition and behavior of human bladder carcinoma cells and to identify the altered signaling pathway(s) underlying the response to EGCG exposure. EGCG inhibited the in vitro growth of invasive bladder carcinoma cells with an IC(50) range of 70-87 microM. At a concentration of 20 microM, EGCG decreased the migratory potential of bladder carcinoma cells with concomitant activation of p42/44 MAPK and STAT3 and inactivation of Akt. Using biochemical inhibitors of MAPK/ERK, and siRNA to knockdown STAT3 and Akt, inhibition of migration was recorded associated with Akt but not MAPK/ERK or STAT3 signaling in bladder cells. In addition, EGCG downregulated N-cadherin in a dose-dependent manner where reduction in N-cadherin expression paralleled declining migratory potential. Continuous feeding of EGCG to mice prior to and during the establishment of bladder carcinoma xenografts in vivo revealed >50% reduction in mean final tumor volume (P 相似文献   

11.
PrP(C) is a glycosylphosphatidylinositol-anchored protein expressed in neurons as well as in the cells of several peripheral tissues. Although the normal function of PrP(C) remains unknown, a conformational isoform called PrP(Sc) (scrapie) has been proposed to be the infectious agent of transmissible spongiform encephalopathies in animals and humans. Where and how the PrP(C) to PrP(Sc) conversion occurs in the cells is not yet known. Therefore, dissecting the intracellular trafficking of the wild-type prion protein, as well as of the scrapie isoform, can be of major relevance to the pathogenesis of the diseases. In this report we have analyzed the exocytic pathway of transfected mouse PrP(C) in thyroid and kidney polarized epithelial cells. In contrast to the majority of glycosylphosphatidylinositol-anchored proteins, we found that PrP(C) is localized mainly on the basolateral domain of the plasma membrane of both cell lines. This is reminiscent of the predominant somatodendritic localization found in neurons. However, similarly to apical glycosylphosphatidylinositol-proteins, PrP(C) associates with detergent-resistant microdomains, which have been suggested to have a role in apical sorting of glycosylphosphatidylinositol-proteins, as well as in the conversion process of PrP(C) to PrP(Sc). In order to discriminate whether detergent-resistant microdomains have a direct role in PrP(Sc) conversion, or whether they are involved in the transport of the protein to the site of its conversion, we have examined the effect of disruption of detergent-resistant microdomain association on PrP(C) intracellular traffic. Consistent with the unusual basolateral localization of this glycosylphosphatidylinositol-linked protein, our data exclude a classical role for detergent-resistant microdomains in the post-trans-Golgi network sorting and transport of PrP(C) to the plasma membrane.  相似文献   

12.
The expression of N‐cadherin, characteristic of various cancers, very often leads to changes in the cells' adhesive properties. Thus, we sought to find out if N‐cadherin expressed in various, but cancer‐related cells, differs in its functional properties that could contribute to variations in cells' phenotypes. In our work, measurements of an unbinding force of a single N‐cadherin molecule, probed with the same antibody both on a surface of living non‐malignant (HCV29) and malignant cells (T24) of bladder cancer, were carried out with the use of an atomic force microscopy. The results show the enhanced N‐cadherin level in T24 malignant cells (8.7% vs. 3.6% obtained for non‐malignant one), confirmed by the Western blot and the immunohistochemical staining. The effect was accompanied by changes in unbinding properties of an individual N‐cadherin molecule. Lower unbinding force values (26.1 ± 7.1 pN) in non‐malignant cells reveal less stable N‐cadherin complexes, as compared to malignant cells (61.7 ± 14.6 pN). This suggests the cancer‐related changes in a structure of the binding site of the antibody, located at the extracellular domain of N‐cadherin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The ability to pattern multiple bioactive cues on a surface is valuable for understanding how neurons interact with their complex extracellular environment. In this report, we introduce a set of methods for creating such surfaces, with the goals of understanding how developing neurons integrate multiple biologically relevant signals and as a tool for studying interactions between multiple neurons. Multiple microcontact printing steps are combined on a single surface to produce an array of polylysine nodes, interconnected by lines of proteins based on the extracellular domains of L1 or N-cadherin. Surprisingly, the N-cadherin protein could also be directly printed onto surfaces while retaining its biological activity. Rat hippocampal neurons selectively attached to the polylysine nodes, differentially extending axonal and dendritic processes along the patterns of L1 and N-cadherin, thus demonstrating control over neuron attachment and outgrowth. Combining these three biomolecules on a single surface revealed a highly complex pattern of protein recognition. Dendrites extended exclusively on N-cadherin patterns, while axons exhibited a very high degree of selectivity on L1 patterns, preferentially at distances greater than 55 mum from the cell body. At shorter distances, axonal processes recognized both L1 and N-cadherin, revealing a new aspect of neuron polarity and axon specification. This onset of L1 selectivity correlated with the establishment of intracellular L1 polarity, suggesting a functional outcome of the process of neuron polarization that has implications in development of neural tissues and creation of in vitro neuron networks.  相似文献   

14.
A neuronal integral membrane glycoprotein M6a has been suggested to be involved in a number of biological processes, including neuronal remodeling and differentiation, trafficking of mu-opioid receptors, and Ca(2+) transportation. Moreover, pathological situations such as chronic stress in animals and depression in humans have been associated with alterations in M6a sequence and expression. The mechanism of action of M6a is essentially unknown. In this work, we analyze the relevance of M6a distribution in plasma membrane, namely its lipid microdomain targeting, for its biological function in filopodia formation. We demonstrate that M6a is localized in membrane microdomains compatible with lipid rafts in cultured rat hippocampal neurons. Removal of cholesterol from neuronal membranes with methyl-β-cyclodextrin decreases M6a-induced filopodia formation, an effect that is reversed by the addition of cholesterol. Inhibition of Src kinases and MAPK prevents filopodia formation in M6a-over-expressing neurons. Src-deficient SYF cells over-expressing M6a fail to promote filopodia formation. Taken together, our findings reveal that the association of M6a with lipid rafts is important for its role in filopodia formation and Src and MAPK kinases participate in M6a signal propagation.  相似文献   

15.
Ultraviolet (UV) radiation‐induced DNA damage and genomic instability is one of the leading causes for melanoma. X‐ray repair cross‐complementary protein 1, XRCC1, plays a critically important role in base excision repair pathway. This study was therefore performed to analyze the correlation between XRCC1 expression, melanoma progression, and patient survival. Using a tissue microarray with a total of 119 patients with melanoma, we demonstrate that loss of XRCC1 expression is associated with the progression of disease from dysplastic nevi to primary melanoma and to metastatic melanoma. We found that the loss of XRCC1 was correlated with the progression of melanoma from AJCC stage II to stage III and with worse overall and disease‐specific 5‐yr and 10‐yr survival of patients with melanoma. Furthermore, we also illustrate the inhibitory effect of XRCC1 on melanoma cell invasion and migration, which are the regulatory events in melanoma metastasis.  相似文献   

16.
The role of caveolin‐1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E‐cadherin in CAV1‐dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E‐cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co‐expression of E‐cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav‐1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E‐cadherin expression in B16F10 (E‐cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co‐expression of CAV1 and E‐cadherin in B16F10 (cav‐1/E‐cad) cells abolishes tumor formation, lung metastasis, increased Rac‐1 activity, and cell migration observed with B16F10 (cav‐1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac‐1 activation in these cells.  相似文献   

17.
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.  相似文献   

18.
Monosomy‐3 in primary uveal melanoma (UM) is associated with a high risk of metastasis and mortality. Although circulating melanoma cells (CMC) can be found in most UM patients, only approximately 50% of the patients develop metastases. We utilized a novel immuno‐FISH assay to detect chromosome‐3 in intact CMC isolated by dual immunomagnetic enrichment. Circulating melanoma cells were detected in 91% of the patients (n = 44) with primary non‐metastatic UM, of which 58% were positive for monosomy‐3. The monosomy‐3 status of CMC corresponded to the monosomy‐3 status of the primary tumor in 10 of the 11 patients where this could be tested. Monosomy‐3 in the CMC was associated with an advanced tumor stage (P = 0.046) and was detected in all four patients who developed metastasis within the follow‐up period of 4 yr. This non‐invasive technique may enable the identification of UM patients at risk for metastasis particularly when a primary tumor specimen is unavailable.  相似文献   

19.
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号