首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have reported a positive relationship between species richness and ecosystem functioning. However, if much of a particular ecosystem function is performed by one species (i.e. a functionally dominant species) and this species is also a competitive dominant that excludes other taxa from a habitat, then it is possible to obtain a negative relationship between richness and ecosystem functioning. Results of a leaf pack breakdown experiment in a small stream suggested that the caddisfly Pycnopsyche gentilis , a common detritivorous insect in North American headwater streams, was both a functional and competitive dominant. In a second experiment we compared the effect of Pycnopsyche on leaf breakdown to that of other detritivore taxa by enclosing them with leaf packs in a section of headwater stream in which they were uncommon ( Pycnopsyche transplant experiment). Final leaf pack mass was significantly lower in the Pycnopsyche enclosure treatment; leaves exposed to a greater diversity of detritivores displayed little reduction in leaf mass. These results demonstrated that Pycnopsyche was a functionally dominant detritivore. In a third experiment ( Pycnopsyche density experiment) we found that Pycnopsyche was also a competitively dominant species. Leaf packs and large Pycnopsyche were placed in enclosures that were permeable to the majority of other detritivores but not Pycnopsyche . Leaf mass lost increased with increasing Pycnopsyche density. Leaf packs exposed to Pycnopsyche , however, contained fewer detritivore taxa which suggested that Pycnopsyche was also a competitive dominant. There was a negative relationship between three measures of diversity and leaf litter breakdown in the Pycnopsyche density experiment. Experiments conducted in natural communities that incorporate important species interactions may produce diversity-ecosystem function relationships other than the positive ones that are commonly reported.  相似文献   

2.
The importance of crayfish in the breakdown of rhododendron leaf litter   总被引:2,自引:0,他引:2  
1. Rhododendron (Rhododendron maximum) is a common evergreen shrub in riparian areas of the southern Appalachians, where its leaves can comprise a large proportion of leaf litter in streams. However, they are relatively refractory and generally considered a low quality food resource for detritivores. 2. Our objective was to assess whether macroconsumers [primarily crayfish (Cambarus bartonii)] influence rhododendron leaf breakdown in a forested southern Appalachian stream in both summer (when leaves other than rhododendron are relatively scarce) and autumn (when other leaves are relatively abundant). We conducted two leaf decay experiments, one in summer and one in autumn, using pre‐conditioned leaves. Macroconsumers were excluded from the benthos of a fourth‐order stream using electric ‘fences’; we predicted that excluding macroconsumers would reduce the decay rate of rhododendron leaves in both summer and autumn. 3. In both experiments, breakdown rate was lower in exclusion treatments. Macroconsumers accounted for approximately 33 and 54% of rhododendron decay in summer and autumn, respectively. We attribute this effect to direct shredding of rhododendron by crayfish. Biomass of insect shredders, insect predators and fungi did not differ between control and exclusion treatments, indicating that insectivorous sculpins (Cottus bairdi) had no effect on rhododendron decay and that omnivorous crayfish did not exert an indirect effect via alteration of insect or fungal biomass. 4. The influence of shredding insects varied between summer and autumn. In summer, when other, more palatable leaf types were not available, rhododendron leaf packs appeared to provide ‘resource islands’ for insect shredders. There was a significant inverse relationship between insect shredders and leaf pack mass in the summer exclusion treatment: insects were the only organisms eating leaves in this treatment and, as shredder biomass increased, remaining leaf pack mass decreased. In the control treatment, however, we did not see this relationship; here, the effect of insect shredders was presumably swamped by the impact of crayfish. In autumn, when other leaves were abundant, insect shredder biomass in rhododendron leaf packs was less than one‐third of summer values. 5. Even at low density (approximately 2 m–2) crayfish were able to influence an ecosystem process such as leaf decay in both summer and autumn. Given the threatened status of many crayfish species in the United States, this finding is especially relevant. Even small alterations in crayfish assemblages, whether via loss of native species and/or introduction of exotic species, may have significant repercussions for ecosystem function.  相似文献   

3.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   

4.
Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores.  相似文献   

5.
1. Leaf packs in streams may serve as food and substrate to many macroinvertebrates, but the relative importance of these two functions has not been disentangled. To test the hypothesis that leaf packs are colonized primarily for their food value rather than as microhabitat, the colonization of leaf packs of red alder and of polyester cloth in a natural stream was compared. 2. Species of shredders showed large differences in the colonization of the two types of leaf pack with almost no use of artificial leaf packs. Non-shredders were also more abundant on natural leaf packs, however, they colonized artificial leaf packs six to eighty times proportionally more than shredders. 3. The effect of different leaf types was virtually eliminated for non-shredders when the amount of fine parriculate detritus (food for many non-shredders) trapped in the leaf pack was added to the analysis as a covariate. Therefore, to non-shredders, leaf types differed only in the retention of fine particulate organic matter. 4. Comparisons of the use of both kinds of leaf packs in riffles versus pools revealed that significantly fewer animals colonized pool leaf packs. 5. These results suggest that food value, and not microhabitat, is the primary determinant of leaf pack use for most shredders and non-shredders.  相似文献   

6.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

7.
Leaf-pack dynamics in a southern African mountain stream   总被引:4,自引:0,他引:4  
SUMMARY 1. The occurrence, composition and invertebrate fauna of naturally-occurring leaf packs were studied over 24 months in Langrivier, a second-order mountain stream in the south-western Cape, South Africa. Langrivier is shallow and fast-flowing and stores very low levels of allochthonous detritus, although natural leaf packs form an obvious part of the energy base in the stream throughout the year. 2. The occurrence and size of the packs were influenced mainly by stream discharge and by the timing and character of leaf fall from riparian trees. Packs were smallest (minimum dry mass 17 g, minimum volume 1.7–10?5 m3) in winter when discharge was high, and largest (maximum dry mass 191 g, maximum volume 4.2–10?3 m3) in spring when discharge decreased and leaf fall from the evergreen riparian trees began. Through the year the packs covered a mean 0.41 % of the stream bed and had a mean abundance of 0.46 packs m?2 of stream bed. They were ephemeral, lasting on average <1.7 months and yet accounted for 29% of the stored detritus in the system. Wood was the dominant component of packs, and leaves at ali stages of decomposition were present throughout the year. 3. The ratio of numbers of invertebrates in packs: numbers of individuals in the benthos was very low (0.002–0.030), presumably because of the rarity and small size of the packs. Nevertheless, the density of invertebrates per unit area covered by leaf packs was consistently much higher than the density in an equivalent area of the benthos, except during peak leaf fall (October to December). 4. Experiments were undertaken with artificial leaf packs in order to determine the extent to which these simulated natural packs. Although both natural and artificial leaf packs contained a high proportion of Plecoptera (46% and 29% respectively), the natural packs contained high numbers of simuliid larvae (33% of total), whereas artificial packs had a high percentage of chironomid larvae (62%), Several other taxa regularly occurred in both types of pack but in very low numbers. In addition,  相似文献   

8.
SUMMARY. Effects of forest clearcutting on rates of leaf breakdown were studied in Big Hurricane Branch, a second-order stream located at Coweeta Hydrologic Laboratory in the southern Appalachian Mountains of North Carolina, USA. Breakdown rates of leaves of three tree species were measured in the stream before, during and after the catchment was clearcut. Changes in the stream attributable to logging and associated activities—principally road building—were increased stream flow, increased sediment transport, elevated water temperatures, increased nitrate concentrations and decreased allochthonous organic inputs. Breakdown rates of all three leaf species were slowed during clearcutting and accelerated later. Following logging the breakdown rate of dogwood leaves was equal to the pre-treatment rate, and white oak and rhododendron leaves broke down faster than prior to treatment. We attribute the slow breakdown during treatment to burial of the leaf packs in sediment. Subsequent acceleration may have been due to a lack of alternative food sources for invertebrate detritivores.  相似文献   

9.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels.  相似文献   

10.
Many studies have estimated relationships between biodiversity and ecosystem functioning, and observed generally positive effects. Because detritus is a major food resource in stream ecosystems, decomposition of leaf litter is an important ecosystem process and many studies report the full range of positive, negative and no effects of diversity on decomposition. However, the mechanisms underlying decomposition processes in fresh water remain poorly understood. Organism body stoichiometry relates to consumption rates and tendencies, and decomposition processes of litter may therefore be affected by diversity in detritivore body stoichiometry. We predicted that the stoichiometric diversity of detritivores (differences in C: nutrient ratios among species) would increase the litter processing efficiency (litter mass loss per total capita metabolic capacity) in fresh water through complementation regarding different nutrient requirements. To test this prediction, we conducted a microcosm experiment wherein we manipulated the stoichiometric diversity of detritivores and quantified mass loss of leaf litter mixtures. We compared litter processing efficiency among litter species in each microcosm with single species detritivores, and observed detritivores with nutrient‐rich bodies tended to prefer litter with lower C: nutrient ratios over litter with higher C: nutrient ratios. Furthermore, litter processing efficiencies were significantly higher in the microcosms containing species of detritivores with both nutrient‐rich and ‐poor bodies than microcosms containing species of detritivores including only nutrient‐rich or ‐poor bodies. This might mean a higher stoichiometric diversity of detritivores increased litter processing efficiency. Our results suggest that ecological stoichiometry may improve understanding of links between biodiversity and ecosystem function in freshwater ecosystems.  相似文献   

11.
Mike Dobson 《Hydrobiologia》1991,222(1):19-28
Aggregation of leat litter formed against small mesh obstacles — placebo traps — were studied in four streams differing in natural retentiveness and pH. In three of the streams, natural benthic accumulations of leaf litter were available for comparison, and in these the fauna in the plastic traps and the natural accumulations was similar. In two of the streams comparisons were made, in terms of percent composition, between the fauna of the stony benthos and that colonizing plastic traps and leaf-filled mesh bags. In an acid, naturally retentive stream, the fauna of the three treatments was similar, although shredders were relatively more abundant in plastic traps and mesh bags. In a circumneutral, non-retentive stream diversity of taxa was reduced in plastic traps compared with the stony benthos, and in mesh bags compared with plastic traps. Numbers of animals per g of leaf litter were similar in plastic traps and mesh bags in the retentive stream. In the non-retentive stream, however, there were fewer animals in mesh bags than in the plastic traps. For many purposes, the plastic traps produce leaf packs which closely mimic natural packs, but the results from mesh bags depend on the background retentiveness of the streams in question.  相似文献   

12.
Continuing high rates of acidic deposition in the eastern United States may lead to long-term effects on stream communities, because sensitive catchments are continuing to lose anions and cations. We conducted a two-year study of the effects of pH and associated water chemistry variables on detrital processing in three streams with different bedrock geology in the Monongahela National Forest, West Virginia. We compared leaf pack processing rates and macroinvertebrate colonization and microbial biomass (ATP concentration) on the packs in the three streams. Breakdown rates of red maple and white oak leaf packs were significantly lower in the most acidic stream. The acidic stream also had significantly lower microbial and shredder biomass than two more circumneutral streams. Shredder composition differed among streams; large-particle detritivores dominated the shredder assemblages of the two circumneutral streams, and smaller shredders dominated in the acidic stream. Within streams, processing rates for three leaf species were not significantly different between the two years of the study even though invertebrate and microbial communities were different in the two years. Thus, macroinvertebrate and microbial communities differed both among streams that differed in their capacity to buffer the effects of acidic precipitation and among years in the same stream; these differences in biotic communities were not large enough to affect rates of leaf processing between the two years of the study, but they did significantly affect processing rates between acidic and circumneutral streams.The Unit is jointly sponsored by the National Biological Service, the West Virginian Division of Natural Resources, West Virginia University, and the Wildlife Management Institute.The Unit is jointly sponsored by the National Biological Service, the West Virginian Division of Natural Resources, West Virginia University, and the Wildlife Management Institute.  相似文献   

13.
The decomposition of deciduous leaf material provides a critical source of energy to aquatic food webs. Changes to riparian forests through harvesting practices may alter the species composition of deciduous leaf material entering streams. We compared over-winter decomposition of three different riparian leaf species (speckled alder (Alnus incana ssp. rugosa (Du Roi) J. Clausen), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.)) to determine their importance as a food resource for macroinvertebrate communities within Boreal Shield streams in northeastern Ontario, Canada. Leaf pack decomposition of the three leaf species formed a processing continuum throughout winter, where alder and birch leaf packs decomposed at a medium rate (k = 0.0065/day and 0.0053/day, respectively) and aspen leaf packs decomposed more slowly (k = 0.0035/day). Macroinvertebrate community colonization on leaf packs changed through time regardless of leaf species. Alder leaf packs supported higher abundances of macroinvertebrates in the fall while aspen leaf packs supported greater shredder abundances in the following spring. The study shows that leaf diversity may be important for providing a sustained food resource for aquatic macroinvertebrates throughout the relatively long over-winter period in Canadian Boreal Shield streams. Riparian forest management strategies should ensure that deciduous plant species richness is sustained in riparian areas.  相似文献   

14.
1. The organic matter dynamics of streams dominated by herbs and grass on their banks are poorly understood, despite the fact that such streams are common worldwide. Further, herbs and grasses can provide large quantities of detritus to stream food webs, and particularly small streams can be heavily shaded by overhanging vegetation, perhaps limiting in‐stream primary production. 2. We quantified the standing crop of edge vegetation and associated macroinvertebrate communities along three headwater streams with herbaceous and grass riparian vegetation on agricultural land in the Piedmont of Maryland, U.S.A., measured the decomposition of four common species of herbs and grasses using experimental leaf packs, and removed edge vegetation experimentally to determine the effect of shading on benthic algal production. 3. Large standing crops of plant material (average range: 68–276 g ash‐free dry mass per m−2), composed largely of monocotyledons, were found at all three study streams. These values are similar to those for coarse particulate organic matter in deciduous forested streams in the eastern U.S.A. In addition, diverse assemblages of shredding macroinvertebrates were observed at all three study sites. 4. Decomposition of the herbs was faster than that of the grasses, and both decomposed faster than most deciduous tree leaf litter. The decomposition rates of the herbs and grasses were significantly related to leaf quality as measured by leaf nitrogen content. Macroinvertebrate shredders colonized all experimental leaf packs, and the colonization of the herbs was faster than that of the grasses. 5. The accrual of chlorophyll‐a after the removal of shading vegetation was faster than that measured prior to removal as well as that in an unmanipulated control reach. 6. Given that the standing crop of organic matter in streams with herbs and grass along their banks was similar to that in forested streams, that the organic matter was rich in nitrogen and used by detritivores, and riparian shading limited algal growth, we suggest that herbaceous and grass plant material may be an important allochthonous food resource in such systems.  相似文献   

15.
Detritus processing by a small woodland stream is analysed by following the loss of weight of 10 g, single species accumulations of riparian leaves. The daily loss rates are expressed as exponential coefficients after the data are fitted by least squares. Comparisons are made between two sites on a small hardwater trout stream during two seasons. Leaf processing rates form a continuum from a low of 0.5%/day to a high of 2.0%/day. Differences between species of leaf are observed, but significant differences between fall and winter processing and between the two sites are not. The response of the invertebrate community to differences in leaf species is investigated using controlled, artificial streams where significant differences in the effect of the invertebrates are related to the ability ofthe leaf to be processed. Evidence suggests that differential invertebrate colonization of leaf packs is a function of microbial colonization and conditioning. The data are used to develop a general scheme of leaf pack processing.  相似文献   

16.
The benthic macroinvertebrate population of a stream in an urbanized watershed was compared to the benthos in a rural stream. Using buried samplers, no significant difference between streams was found in total numbers of invertebrates, indicating no long term loss of colonization potential in the urban stream. Classifying the benthos in functional family groupings (based on Cummins, 1973) showed the rural stream to have nearly twice the functional diversity of the urban stream. The benthos of the urban stream was dominated by a few groups of invertebrates which could adapt to the erosional/depositional nature of the substrate and could utilize transient, low quality food sources. The density of invertebrates was adequate to support a coho salmon and cutthroat trout population in the urban stream. Apparently, the salmonids feed on available benthos and do not select specific benthic trophic groups. An evaluation of six similarity coefficients using cluster analysis showed that only the Canberra Metric index was able to represent the raw data according to known data associations.  相似文献   

17.
The importance of leaf litter diversity for decomposition, an important process in terrestrial ecosystems, is much debated. Previous leaf litter‐mixing studies have shown that non‐additive leaf litter diversity effects can occur, but it is not clear why they occurred in only half of the studies and which underlying mechanisms can explain these conflicting results. We hypothesized that incorporating the role of macro‐detritivores could be important. Although often ignored, macro‐detritivores are known to strongly influence decomposition. To better understand the importance of macro‐detritivores for leaf litter mixing effects during decomposition, four common leaf litter species were added separately and in two and four species combinations to monocultures of three different macro‐detritivores and a control without fauna. Our results clearly show that leaf litter‐mixing effects occurred only in the presence of two macro‐detritivores (earthworms and woodlice). Application of the additive partitioning method revealed that in the specific combination of woodlice and the presence of a slow‐decomposing leaf litter species in the mixture, leaf litter mixing effects were strongly driven by a selection effect. This was caused by food preference of the isopod: the animals avoided the slow decomposing species when given the choice. However, most leaf litter mixing effects were caused by complementarity effects. The potential mechanisms underlying the complementarity effects are discussed. Our results clearly show that that both leaf litter and macro‐detritivore identity can affect litter diversity. This may help to explain the conflicting results obtained in previous experiments.  相似文献   

18.
An exclosure experiment was carried out in the reed-dominated littoral zone of a volcanic lake (Lake Vico, central Italy) to test whether the impact of predatory fish on benthic invertebrates cascades on fungal colonisation and breakdown of leaf detritus. The abundance, biomass, and Shannon diversity index of the invertebrate assemblage colonising Phragmites australis leaf packs placed inside: (1) full-exclosure cages, (2) cages allowing access only to small-sized fish predators, and (3) cageless controls, were monitored over a 45-day period together with the mass loss and associated fungal biomass of leaf packs. The species composition of the fungal assemblage was further assessed at the end of the manipulation. In general, invertebrate predators did not show any significant response to fish exclusion, either on a trophic guild or on a single taxon level. In contrast, the exclusion of large predatory fish induced a diverse spectrum of changes in the abundance and population size-structure of dominant detritivore taxa, ultimately increasing the biomass and Shannon diversity index of the whole detritivorous guild. These changes corresponded with significant variations in leaf detritus decay rates as well as in the biomass and assemblage structure of associated fungal colonisers. Our experimental findings provide evidence that in Lake Vico effects of fish predators on invertebrate detritivores influence the fungal conditioning and breakdown of the detrital substrate. We conclude that in lacustrine littoral zones predator-driven constraints may structure lower trophic levels of detritus-based food webs and affect the decomposition of leaf detritus originated from the riparian vegetation.  相似文献   

19.
1. Few studies have assessed the effects of macroconsumers, such as fishes and shrimps, on detritus and detritivores.
2. We used an underwater electric field to prevent macroconsumers from feeding in and on leaf packs in a lowland stream in Costa Rica and thus to determine their effects on the density of insect detritivores and decay rates of leaves.
3. Exclusion of macroconsumers resulted in significantly higher densities of small invertebrates inhabiting leaf packs. Most of these were collector–gatherers, none were shredders.
4. Despite the increase in invertebrate density, decay rates of leaves were not statistically different. These findings contrast with results from temperate streams showing that increases in the density of invertebrates in leaf packs typically result in an increased rate of decay.
5. Leaf decay rates and invertebrate densities were also compared between leaf packs placed in electric exclusion treatments and those placed in coarse (2 cm) plastic net bags (as used in many previous studies). Our results suggest that using such netting in tropical streams may deter macroconsumers, which can affect insect density and, potentially, decay rates of organic matter.  相似文献   

20.
Although leaf‐cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf‐cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf‐cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf‐litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf‐cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号