首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

2.
The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l?1 was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l?1. Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h?1 and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.  相似文献   

3.
1. The respiration of Amoeba proteus was measured. 10 c. mm. of cells were found to use about 1.6 mm.3 of oxygen per hour at 20°C. The respiratory quotient was found to be nearly unity. 2. No anaerobic metabolism was found for Amoeba. 3. The respiration of Blepharisma was found to be from 3 to 7 mm.3 oxygen per hour for 10 mm.3 cells. The respiratory quotient was about 1. 4. Blepharisma was shown to have a definite anaerobic metabolism. 80 mm.3 cells caused the evolution of 12.5 mm.3 carbon dioxide per hour at 20°C. in the presence of bicarbonate.  相似文献   

4.
Glycolytic activity of rat peritoneal mast cells has been measured by the Cartesian ampulla diver technique. The rates of anaerobic glycolysis, expressed as CO2 expelled from a bicarbonate medium, are 1.70 x 10-6 µl and 1.43 x 10-6 µl per cell per hour with and without glucose, respectively. The aerobic glycolysis rate in the presence of glucose, assuming the respiratory quotient to be 1, is 0.93 x 10-6 µl CO2 per cell per hour. It is pointed out that the anaerobic and non-respiratory aerobic carbon dioxide production by mast cells is much higher than the respiratory oxygen uptake reported previously. These values have been interpreted in terms of glucose utilization.  相似文献   

5.
Mass spectrometry: A tool for on-line monitoring of animal cell cultures   总被引:1,自引:0,他引:1  
The magnetic sector mass spectrometer is able to detect oxygen uptake and carbon dioxide production rates from animal cell cultivations performed in 101 biorectors. Such data have not been available with the use of classic exhaust gas analysis applying paramagnetic analyzers and infra-red sensors due to the insensitivity of the apparatus available. In the course of the present work we were able to demonstrate, that the oxygen uptake rate correlates to the number of viable cells. Additionally oxygen uptake rates supplied on-line information about the actual physiology of the cells: When the rates changed during the cultivation process, this immediately indicated the occurrence of limitations of components in the medium. The information could be useful in timing key events, such as performing splits or harvesting the bioreactor.Abbreviations OUR oxygen uptake rate - CDPR carbon dioxide production rate - RQ respiratory quotient This publication is dedicated to the 65 th birthday of Prof. Dr. F. Wagner, University of Braunschweig.  相似文献   

6.
Bioprocess scale‐up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell‐free mixing studies were performed in production scale 5,000‐L bioreactors to evaluate scale‐up issues. Using the current bioreactor configuration, the 5,000‐L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5‐ and 20‐L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000‐L configuration can only support a maximum viable cell density of 7 × 106 cells mL?1. Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000‐L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing‐related engineering parameters in the 5,000‐L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed‐batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000‐L bioreactors may need optimizing to mitigate the risk of different performance upon process scale‐up. Biotechnol. Bioeng. 2009;103: 733–746. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
A computer-aided on-line real-time monitoring system for plant cell bioprocesses was established and applied to the cultivation of Perilla frutescens plant cells in a bioreactor. This system calculated several informative process variables which were useful for the identification of the physiological states of the plant cells during cultivation. Some variables, such as the respiratory quotient (RQ), pH, and specific carbon dioxide evolution rate (SCER), could be used for the identification of the growing phase of cell cultures. The results also suggest that the oxygen uptake rate (OUR) and the specific OUR (SOUR) may depend on the accumulation of anthocyanin (a secondary metabolite) in P. frutescens cell cultures.  相似文献   

8.
CO2 in large-scale and high-density CHO cell perfusion culture   总被引:2,自引:0,他引:2  
Productivity in a CHO perfusion culture reactor was maximized when pCO2 was maintained in the range of 30–76 mm Hg. Higher levels of pCO2 (> 150 mm Hg) resulted in CHO cell growth inhibition and dramatic reduction in productivity. We measured the oxygen utilization and CO2 production rates for CHO cells in perfusion culture at 5.55×10-17 mol cell-1 sec-1 and 5.36×10-17 mol cell-1 sec-1 respectively. A simple method to directly measure the mass transfer coefficients for oxygen and carbon dioxide was also developed. For a 500 L bioreactor using pure oxygen sparge at 0.002 VVM from a microporous frit sparger, the overall apparent transfer rates (kLa+kAA) for oxygen and carbon dioxide were 0.07264 min-1 and 0.002962 min-1 respectively. Thus, while a very low flow rate of pure oxygen microbubbles would be adequate to meet oxygen supply requirements for up to 2.1×107 cells/mL, the low CO2 removal efficiency would limit culture density to only 2.4×106 cells/mL. An additional model was developed to predict the effect of bubble size on oxygen and CO2 transfer rates. If pure oxygen is used in both the headspace and sparge, then the sparging rate can be minimized by the use of bubbles in the size range of 2–3 mm. For bubbles in this size range, the ratio of oxygen supply to carbon dioxide removal rates is matched to the ratio of metabolic oxygen utilization and carbon dioxide generation rates. Using this strategy in the 500 L reactor, we predict that dissolved oxygen and CO2 levels can be maintained in the range to support maximum productivity (40% DO, 76 mm Hg pCO2) for a culture at 107 cells/mL, and with a minimum sparge rate of 0.006 vessel volumes per minute.A = volumetric agitated gas-liquid interfacial area at the top of the liquid, 1/mB = cell broth bleeding rate from the vessel, L/minCER = carbon dioxide evolution rate in the bioreactor, mol/min[CO2] = dissolved CO2 concentration in liquid, M[CO2]* = CO2 concentration in equilibrium with sparger gas, M[CO2]** = CO2 concentration in equilibrium with headspace gas, MCO2(1) = dissolved carbon dioxide molecule in water[CT] = total carbonic species concentration in bioreactor medium, M[CT]F = total carbonic species concentration in feed medium, MD = bioreactor diameter, mDI = impeller diameter, mDb = the initial delivered bubble diameter, mF = fresh medium feeding rate, L/minHL = liquid height in the vessel, mkA = carbon dioxide transfer coefficient at liquid surface, m/mink infA supO = oxygen transfer coefficient at liquid surface, m/minNomenclature  相似文献   

9.
A method for the measurement of oxygen uptake and carbon dioxide production rates in mammalian cell cultures using membrane mass spectrometry is described. The small stirred reactor with a volume of 15 ml and integrated pH-control permits the economical application of isotopically labelled substrates and 13C-labelled bicarbonate buffer. Repetitive experiments showed the reproducibility of the method. In one case bicarbonate-free HEPES buffer was used and carbon dioxide production was measured using the intensity of the peak at m/z = 44(12CO2). In all other cases H13CO3 -buffer was applied and also12CO2 was measured. The minimum cell density required was only 2 × 104 cells ml−1. In the hybridoma T-flask cultivation studied here the measured specific oxygen uptake and carbon dioxide production rates were reasonably constant during the exponential growth phase and decreased significantly afterwards. Estimated respiratory quotients were always between0.90 and 0.92 except in HEPES-buffer, where a value of 0.67 was found. In the latter case specific oxygen uptake rate was higher than in bicarbonate buffered culture, however, carbon dioxide production rate was lower, and viable cell density was lowest. The addition of phenazine methosulfate, an artificial electron acceptor, increased both rates resulting in highest viable cell density but also highest lactate production rate. Glucose and glutamine pulse-feeding increased final cell density. The method described is directly applicable for samples from batch, fed-batch and continuous cultivations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In this research, we first determined the three most significant nutrient factors affecting haloalcohol dehalogenase HheC production by Escherichia coli P84A/MC1061. These were glycerol, yeast extract, and ammonium sulfate. The steepest ascent method was then applied to obtain the optimal design intervals of the three factors. An application of center composite design was used, and the ingredients of the optimized medium were 1.8 g l?1 glycerol, 48 g l?1 yeast extract, 2.2 g l?1 ammonium sulfate, 5 g l?1 compound phosphate, 1 g l?1 magnesium sulfate, and 1.19?×?10?5?g l?1 ferric sulfate. The enzyme activity reached 109,365 U ml?1 under the most favorable conditions, which is a 277.7 % increase compared with the control group. Our study of cellular respiration parameters (oxygen uptake rate and carbon dioxide emission rate) revealed that the metabolic activity of the strain was strongly promoted under these optimal nutrient conditions and that yeast extract had a positive effect on respiratory intensity and the expression levels of HheC.  相似文献   

11.
The total concentration of dissolved carbon dioxide in fermentation broths is one to two orders of magnitude greater than that of oxygen for pH > 6.5. The rate of change in this total concentration can be sufficiently large to produce a discrepancy between the carbon dioxide transfer rate (CTR) across the gas-liquid interface, available from gas analyses, and the carbon dioxide evolution rate (CER) of biomass in the fermentor. The CER is the variable of most interest to fermentation technologists but cannot be measured directly. The CTR is commonly used to yield the measured respiratory quotient (called here the TQ, or transfer quotient). Evaluation of the real underlying respiratory quotient (RQ), however, requiures the unmeasureable CER. Equations defining the problem are presented and are found to accurately predict the discrepancy between the TQ and the RQ in fed-batch fermentations of Escherichia coli. During the exponential growth phase, the TQ is less than the RQ. A changing pH can cause the TQ to be bigger or smaller than the RQ, while pH fluctuations associated with on-off pH controller action make the CTR and hence the TQ noisy. The RQ is estimated on-line during an E. coli fermentation and is shown to be constant during the fermentation, even though the TQ varies greatly. (c) 1992 John Wiley & Sons, Inc.  相似文献   

12.
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L?1 day?1. The results showed that 0.74 g L?1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L?1 was achieved. This represented an increase of 0.18 g L?1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.  相似文献   

13.
The mass transfer and hydrodynamics of two outdoor tubular photobioreactor designs were compared, a Tredici-design near-horizontal tubular photobioreactor (NHTR) and an enhanced version of this reactor (ENHTR), for the purpose of improving algal growth via improved hydrodynamics. The enhancements included addition of vertical bubble columns at the sparger end and a larger degasser with a diffuser. Gas-liquid mass transfer and other performance measures were assessed for a range of gas sparging rates. The ENHTR modifications proved to be very successful, increasing oxygen stripping and carbon dioxide dissolution by 120–220 % and 0–50 %, respectively. There was an increase in axial mixing and a fourfold decrease in total mixing time. Experiments were conducted to determine that approximately 50 % of the mass transfer occurred in the vertical bubble columns, while 85–90 % of the mass transfer in the near-horizontal tubes occurred in the lower half of the tubes. These improvements can lead to increased algae productivity depending upon culture-specific parameters. The theoretical maximum productivity of a hypothetical algal culture would be 1.6 g m?2 h?1 in the NHTR, and we have previously achieved a maximum of 1.5 g m?2 h?1 growing Arthrospira at densities up to 7.5 g L?1 in this reactor. Due to enhanced mass transfer in the ENHTR, the predicted maximum productivity should increase to 4.75 g m?2 h?1. The potential for further improvements in productivity due to various additional enhancements is described.  相似文献   

14.
Growth of the marine microalga Tetraselmis striata Butcher and the macroalga Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed online monitoring of pH and dissolved oxygen tension and was used for characterization of photoautotrophic growth. Carbon dioxide addition regulated pH and was used to optimise irradiance. Oxygen was removed from the system by addition of hydrogen over a palladium catalyst to quantify oxygen production. In addition, the bubble column photobioreactor was suited for cultivation of algae due to fast gas-to-liquid mass transfer (kLa) and fast mixing provided by split and dual sparging. Specific growth rates (SGRs) were measured using both offline and online measurements. The latter was possible, because rectilinear correlation was observed between carbon dioxide addition and optical density, which shows that carbon dioxide addition may be used as an indirect measurement of microalgal biomass (x). The slope of the rectilinear fit of ln (dx/dt) as a function of the time (t) then revealed the SGR. These determinations revealed detailed information about changes in growth with up to three different SGRs in the different batch cultures of both micro- and macroalgae. The maximum SGRs found by online determination were 0.13 h?1 for T. striata and 0.12 day?1 for C. crispus. We have developed and described a system and presented some data handling tools that provide new information about growth kinetics of algae.  相似文献   

15.
High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4–8 g/(L h) if DO equals 30 % saturation or 5–10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (<4 % DO). Methanol/sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)?1 at an OTR of 8.28 g O2(L h)?1 with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.  相似文献   

16.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

17.
Carbon dioxide production and oxygen uptake were measured in undisturbed sediment cores taken during winter from four lakes of different trophic state. Respiration was measured at 5, 10, 15 and 20°C at high oxygen saturation (75–100%). The respiratory quotient, calculated from the mean values of carbon dioxide production and oxygen uptake at each temperature for each lake, was 0.83–0.96 with a mean value for the four lakes of 0.90. At very low oxygen saturations (<10%) carbon dioxide production was 21–42% of the production at 20°C and high oxygen saturations. The results indicate that under aerobic conditions, oxygen uptake and carbon dioxide production are closely-coupled processes in these lake sediments.  相似文献   

18.
A procedure for estimating biomass during batch fermentation from on-line gas analysis is presented. First, the respiratory quotient was used to determine the fraction of the total oxygen utilization rate required for cell maintenance and growth versus product synthesis. The modified oxygen utilization rate was then used to estimate biomass on-line by integrating the oxygen balance for cell synthesis-maintenance. The method is illustrated for the case of L-lysine synthesis by Corynebacterium glutamicum.List of Symbols CER mmol CO2/l · h carbon dioxide evolution rate - M O 2/x mmol O2/h · g cells maintenance coefficient - OUR mmol O2/l · h oxygen utilization rate - OUR X mmol O2/l · h OUR fraction for cell maintenance and growth - RQ mmol CO2/mmol O2 respiratory quotient(CER/OUR) - X g cells/l biomass concentration - Y X/O2 yield coefficients  相似文献   

19.
A failure in the aeration system of Litopenaeus vannamei rearing with biofloc technology can decrease the oxygen concentrations rapidly and also increase the carbon dioxide (CO2) concentrations at the same rate. We report here an evaluation of the effect of CO2 on the oxygen consumption of L. vannamei. We used a continuous-flow respirometer with water recirculation equipped with a digital fiber-optic oximeter. Eight juveniles of L. vannamei (12.1 ± 1. 4 g) were used in each treatment with one per respiratory chamber (0.6 L). The shrimp were exposed to six concentrations of CO2 (5, 30, 60, 95, 150, and 300 mgCO2/L) with an acute exposure time of six hours. Upon treatment with 5–30 mgCO2/L, we observed a consumption of oxygen of 0.233 ± 0.129 and 0.33 ± 0.072 mgO2/g/h, respectively. Upon treatment with 60 mgCO2/L, an increase was observed in the oxygen consumption (0.521 ± 0.098 mgO2/g/h). Upon treatment with 95, 150, and 300 mgCO2/L however, the shrimp decreased their oxygen consumption and lost their equilibrium. The CO2 should therefore be maintained at a maximum of 5 mgCO2/L during shrimp rearing.  相似文献   

20.
Abstract

The respiratory pigments myoglobin and haemocyanin were characterised in the marine pulmonate Siphonaria zelandica (Quoy & Gaimard) and their roles in an oxygen transfer system were postulated. In air, when the animals were active, oxygen was transported from a simple diffusion lung by haemocyanin in the blood which had a half-saturation value of 12.7 mm Hg at pH 7.2 and 25°c. At pH 7.6 the oxygen affinity decreased to 17.3 mm Hg, indicating a reverse Bohr effect which might be expected to facilitate oxygen uptake in the lung during bursts of activity at low tide. A high oxygen-combining capacity of buccal mass myoglobin (21.2 vols %) indicated a role of oxygen storage during bursts of feeding activity. The distribution of carbonic anhydrase in various tissues was consistent with a transfer system facilitating the release of metabolic carbon dioxide from the buccal mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号