首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5–30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography–mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.  相似文献   

2.
A comparative study has been conducted on seven white rot fungi to investigate their abilities to produce laccase and selectively degrade lignin. Laccase was produced constitutively on the different media tested. Of the different lignins, phenolic compounds and sugars involved, the highest laccase yield was obtained on indulin AT. Salicylic acid inhibited enzyme activity. A temperature of 20°C and 0.2% of indulin AT were found to be optimum for enzyme activity. No correlation was found between the amount of enzyme and fungal mass produced. During semisolid degradation of angiospermic wood sawdust, Daedalea flavida caused a total weight loss of 11%, with a lignin loss of 15.77% during two months of decay. Lignin removal was comparatively selective during the first month, during which time laccase production was also higher, indicating its probable role in lignin degradation.  相似文献   

3.
The litter-dwelling fungus Fusarium incarnatum LD-3 has been identified as a novel producer of laccase. The present work was oriented towards the optimization of various cultivation conditions for maximizing laccase production under solid substrate fermentation. The process parameters were optimized by the “one factor at a time” approach. Maximum laccsase production was obtained at pH 5.0 and at a temperature of 28 °C with 60 % moisture content using rice bran as a substrate. The laccase production was enhanced in the presence of aromatic inducer, i.e. ortho-dianisidine at a concentration of 0.5 mM. Laccase production was further increased by 52.56 % when the medium was supplemented with 2 % (v/v) alcohol. Among the various amino acids tested as a growth factor and nitrogen source, D-Serine and DL-2 Amino n-butyric acid, DL-Alanine and L-Glycine were found to be the most suitable for laccase production. The highest laccase production (1,352.64 U/g) was achieved under optimized conditions, and was 2.1-fold higher than the unoptimized conditions. Thus, the novel litter-dwelling fungal isolate Fusarium incarnatum LD-3 seems to be an efficient producer of laccase and can be further exploited for biotechnological applications. This is the first report on the optimization of cultivation conditions and inducers for laccase production from Fusarium incarnatum LD-3.  相似文献   

4.
Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes.  相似文献   

5.
The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.  相似文献   

6.
7.
《Process Biochemistry》2007,42(4):681-685
The potential application of dry biomass of a cyanobacterium Anacystis nidulans as a supplement in SSF for the production of laccase from Pleurotus ostreatus was evaluated. Experiments were carried out in solid culture using groundnut shell as a basic substrate supplemented with four independent nitrogen sources (ammonium sulphate, urea, yeast extract and dry powder of cyanobacteria). All the four supplements enhanced the enzyme yield, and yeast extract showed precedence over inorganic nitrogenous sources. However, when dry biomass of A. nidulans was used as an additive to groundnut shell (agricultural residues), it supported maximum cell growth (56.83 ± 5.56 mg/g dry substrate) and laccase production (49.21 ± 4.89 U/g dry substrate). Addition of 1 mM copper salt in the medium containing groundnut shell supplemented with yeast extract gave laccase activity of 32.64 ± 3.4 U/g dry substrate. When dry powder of cyanobacterial biomass was used as N-supplement, laccase production enhanced to 65.42 ± 6.48 U/g dry substrate. In addition to the enhancement to enzyme production inhibitory effects of high concentrations of copper was also diminished in the medium having dry cyanobacterial biomass. This study, forms the first report on the potential application of cyanobacterial biomass as an additive for production of laccase by Pleurotus ostraetus MTCC 1804 in solid state fermentation and has relevance in scale-up production of this fungal enzyme of commercial significance.  相似文献   

8.
The purposes of this study were to assess the influence of culture medium on biomass production, fatty acid, and pigment composition of Choricystis minor var. minor and to evaluate the use of this microalga as a source of fatty raw material for biodiesel production. Cultures of C. minor var. minor were grown using WC (Wright’s cryptophyte) and BBM (Bold’s Basal medium) media. BBM medium produced more biomass (984.3 mg L?1) compared to the WC medium (525.7 mg L?1). Despite this result, WC medium produced a higher methyl ester yield for biodiesel production than the BBM medium (170.0 and 90.2 mg g?1 of biomass, respectively). The average percentage of fatty acids obtained using the WC medium (17.0 %) was similar to soybean (18.0 %) and with similar biomass fatty acid profile. However, for pigment production, carotenoids and chlorophyll concentrations were twice as high when using the BBM medium.  相似文献   

9.
Armillaria sp. F022, a white-rot fungus isolated from decayed wood in tropical rain forest was used to biodegrade anthracene in cultured medium. The percentage of anthracene removal by Armillaria sp. F022 reached 13 % after 7 days and at the end of the experiment, anthracene removal level was at 87 %. The anthracene removal through sorption and transformation was investigated. 69 % of eliminated anthracene was transformed by Armillaria sp. F022 to form other organic structure, while only 18 % was absorbed in the mycelia. In the kinetic experiment, anthracene dissipation will not stop even though the biomass had stopped growing. Anthracene removal by Armillaria sp. F022 was correlated with protein concentration (whole biomass) in the culture. The production of enzyme was affected by biomass production. Anthracene was transformed to two stable metabolic products. The metabolites were extracted in ethyl-acetate, isolated by column chromatography, and then identified using gas chromatography–mass spectrometry (GC–MS).  相似文献   

10.
For the first time the dependence of completeness of pyrene degradation by the white-rot fungus Pleurotus ostreatus D1 on cultivation conditions was found. In Kirk’s medium about 65.6 ± 0.9% of the initial pyrene was metabolized after 3 weeks, with pyrene-4,5-dihydrodiol accumulating. This process was accompanied by laccase production only. In basidiomycetes rich medium, P. ostreatus D1 metabolized up to 89.8 ± 2.3% of pyrene within 3 weeks without pyrene-4,5-dihydrodiol accumulation throughout the time of cultivation. Phenanthrene and phthalic acid were identified as the metabolites produced from pyrene degradation under these conditions. Accumulation of phenanthrene with its subsequent disappearance was observed. One more metabolite probably was the product of phenanthrene degradation. Pyrene metabolism in basidiomycetes rich medium was accompanied first by laccase and tyrosinase production and later by versatile peroxidase production. The cell-associated activities of laccase, tyrosinase, and versatile peroxidase were found. The data obtained indicate that both enzymes (laccase and versatile peroxidase) are necessary for complete degradation of pyrene. Furthermore, both cell-associated and extracellular laccases can catalyse the first stages of pyrene degradation, and versatile peroxidase can be necessary for oxidation of the resulting metabolites.  相似文献   

11.
栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化   总被引:4,自引:1,他引:3  
利用显色反应对栓孔菌属(Trametes)进行了漆酶高产菌株的筛选,并对目标菌株的产酶条件进行了优化,在添加愈创木酚的固体培养基中,通过显色反应初步筛选出漆酶高产菌株东方栓孔菌Trametes orientalis Cui 6300;进一步通过单因子分析、正交试验和ABTS法确定了菌株Cui 6300的最适产酶条件:麦芽糖15 g/L,蛋白胨3 g/L,pH 4.8,Cu2+2.0 mmol/L,培养温度28°C,接种饼直径1.5 cm,此时酶活最高可达19.923 U/mL;同时探索了Cu2+浓度及添加时间对其菌丝生物量和漆酶活力的影响。研究表明,Cu2+最适添加浓度为2.0 mmol/L,添加时间为接种后第3天。  相似文献   

12.
We compared the ability of different plant-based expression platforms to produce geraniol, a key metabolite in the monoterpenoid branch of the terpenoid indole alkaloid biosynthesis pathway. A geraniol synthase gene isolated from Valeriana officinalis (VoGES) was stably expressed in different tobacco systems. Intact plants were grown in vitro and in the greenhouse and were used to generate cell suspension and hairy root cultures. VoGES was also transiently expressed in N. benthamiana. The highest geraniol content was produced by intact transgenic plants grown in vitro (48 μg/g fresh weight, fw), followed by the transient expression system (27 μg/g fw), transgenic plants under hydroponic conditions in the greenhouse and cell suspension cultures (16 μg/g fw), and finally hairy root cultures (9 μg/g fw). Differences in biomass production and the duration of cultivation resulted in a spectrum of geraniol productivities. Cell suspension cultures achieved a geraniol production rate of 1.8 μg/g fresh biomass per day, whereas transient expression produced 5.9 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is ignored) or 0.5 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is included). The superior productivity, strict process control and simple handling procedures available for transgenic cell suspension cultures suggest that cells are the most promising system for further optimization and ultimately for the scaled-up production of geraniol.  相似文献   

13.
The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.  相似文献   

14.
15.
The white-rot fungus Trametes pubescens MB 89 has been identified as an outstanding, although not-yet-described, producer of the industrially important enzyme laccase. Extracellular laccase formation could be greatly stimulated by the addition of Cu(II) to a simple, glucose-based culture medium. Using optimum Cu concentrations (1.5-2.0 mM), maximum values for laccase activity of approximately 65 U/ml were obtained. The synthesis of the laccase protein depended on the presence of Cu in the medium as shown by Western blot analysis. Copper had to be supplemented during the exponential phase of growth for its maximal effect; addition during the stationary phase, during which laccase activity is predominantly formed, resulted in markedly reduced laccase productivity. As was shown by X-ray microanalysis of T pubescens mycelia obtained from a laboratory fermentation, Cu was rapidly taken up by the fungal biomass. A possible explanation for this stimulatory effect of Cu on laccase biosynthesis could be a role for this enzyme activity in melanin synthesis. The stimulatory effect of Cu on laccase synthesis was also effective for several other basidiomycetes and hence could be used as a simple method to boost the production of this enzyme.  相似文献   

16.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

17.
Batch production of gluconic acid in the presence of a high concentration of glucose was investigated using free and immobilized mycelia of Aspergillus niger IAM 2094 with the aim of achieving repeatable constant production. Accumulation of 300 g/l of gluconate with a productivity of 60 g/l·h was achievable by intermittent addition of powdered glucose using filamentous-form mycelia in the presence of 150 ppm dissolved oxygen. However, this productivity became unattainable after a few repetitions. The use of pellet-form mycelia, in place of filamentous ones, did not prove effective either. However, when the mycelia were immobilized on a nonwoven fabric, a sustained level (220 g/l) of gluconate production was reproducible. Immobilized mycelia grown in a gas phase (air or oxygen) had a much longer durability than mycelia grown in a liquid culture medium. The gluconate-producing activity of immobilized mycelia grown in the presence of oxygen was much higher than that of mycelia grown in air. At 150 ppm dissolved oxygen, 220 g/l of gluconate was repeatedly produced 14 times at a constant production rate in a period of about 1,000 h.  相似文献   

18.
Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.  相似文献   

19.
Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal.  相似文献   

20.
The production of laccase by immobilized mycelia of Peniophora cinerea and Trametes versicolor was studied. In an initial stage, experimental assays were performed in Erlenmeyer flasks using free and immobilized mycelium, and the performance of the fungal strains to produce the enzyme was compared. Both fungi adhered into the support material (a synthetic fiber), growing not only on the surface but also in the interspaces of the fibers. Immobilization of P. cinerea provided a 35-fold increase in laccase production when compared to the production obtained by using free mycelium. On the other hand, immobilization of T. versicolor caused a decrease in laccase activity. A comparison between the strains revealed that immobilized P. cinerea (3,500 U/L) surpassed the enzyme production by free T. versicolor (800 U/L). When the conditions that gave the best laccase production to each fungus were employed in a stirred tank bioreactor, very low laccase production was observed for both the cases, suggesting that shear stress and mycelia damage caused by the agitation impellers negatively affected the enzyme production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号