首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative study has been conducted on seven white rot fungi to investigate their abilities to produce laccase and selectively degrade lignin. Laccase was produced constitutively on the different media tested. Of the different lignins, phenolic compounds and sugars involved, the highest laccase yield was obtained on indulin AT. Salicylic acid inhibited enzyme activity. A temperature of 20°C and 0.2% of indulin AT were found to be optimum for enzyme activity. No correlation was found between the amount of enzyme and fungal mass produced. During semisolid degradation of angiospermic wood sawdust, Daedalea flavida caused a total weight loss of 11%, with a lignin loss of 15.77% during two months of decay. Lignin removal was comparatively selective during the first month, during which time laccase production was also higher, indicating its probable role in lignin degradation.  相似文献   

2.
Daedalea flavida Lév. causes considerable damage to bamboos. Bamboo tissues become soft, discoloured and fibrous. The pathogen causes considerable decay of internodes (about 22%) and rhizomes (about 38%). The pathogen attacks the cells of vascular bundles, bundle sheath sclerenchyma and phloem cells; it does not attack epidermis, hypodermis, and peripheral sclerenchyma tissues. Fungal hyphae grow longitudinal and transverse in host tissues. The parasite decomposes both cellulose and lignin.  相似文献   

3.
4.
Laccase is among the major enzymes of white rot fungi involved in lignocellulose degradation. The present paper reports its production by two white rot fungi (Coriolus versicolor, Funalia trogii) under different nutritional conditions. Various synthetic culture media and natural culture medium (molasses wastewater) were tested. Enzyme production in various synthetic culture media, molasses wastewater (vinasse) culture medium and in the absence or presence of cotton stalk supplements showed that vinasse culture medium was a better laccase-inducer medium than the synthetic culture medium. Addition of cotton stalk to various media enhanced the enzyme production. The highest laccase activity was obtained in vinasse culture medium with cotton stalk.  相似文献   

5.
Aims: To improve exopolysaccharides (EPS) production of Cordyceps militaris (C. militaris), effects of different culture method on mycelial biomass and EPS production in the submerged culture of C. militaris were investigated. Methods and Results: A new two‐stage fermentation process for EPS production of C. militaris was designed in this work. Central composite design (CCD) was utilized to optimize the two‐stage fermentation process. The results showed that the two‐stage fermentation process for EPS production was superior to other culture method (conventional static culture and shake culture). CCD revealed that the optimum values of the test variables for EPS production were shaken for 140 h followed by 130‐h static culture. The maximum EPS production reached 3·2 g l?1 under optimized two‐stage culture and was about 2·3‐fold and 1·6‐fold in comparison with those of original static culture and shake culture. Conclusions: It was indicated that a new two‐stage culture method obtained in this work possessed a high potential for the industrial production for EPS of C. militaris. Significance and Impact of the Study: The fundamental information obtained in this work is complementary to those of previous investigations on the submerged culture of C. militaris for the production of bioactive metabolites.  相似文献   

6.
The white-rot fungusPhlebia radiata, immobilized on a polypropylene carrier, was cultivated in a laboratory fermentor under semi-continuous conditions on culture media varying in the content of nitrogen, glucose, vitamins and microelements. Moreover, two laccase inducers were used: veratryl alcohol and veratraldehyde. Throughout the cultivation except the growth phase in the first cycle of fermentation, the observed rate of laccase expression reached up to about 2.0 nkat/mL per 1 h of cultivation, as determined by ABTS oxidation. In most experiments, phenol oxidase activity was determined also in the reaction with syringaldazine, giving reaction rates almost two times lower than in the case of ABTS.  相似文献   

7.
Laccase production byCyathus bulleri was lower in lignins and phenolic compounds as compared to malt extract medium (8 U/mL) which increased significantly on supplementing these compounds with malt extract. Of the different lignins and phenolic compounds, Reax, lignin and orcinol exhibited maximum laccase formation (12 and 68 U/mL, respectively) under static culture conditions, while sugars repressed it. Laccase activity inC. bulleri was higher under static than under shaking cultivation conditions. Moreover, agitation repressed laccase formation even in the presence of inducers.  相似文献   

8.
Heat-shock proteins (HSPs) act like "chaperones", making sure that the cell's proteins are in the right shape and in the right place at the right time. Heat-shock protein glycoprotein 96 (gp96) is a member of the HSP90 protein family, which chaperones a number of molecules in protein folding and transportation. Heat-shock protein gp96 serves as a natural adjuvant for chaperoning antigenic peptides into the immune surveillance pathways. Currently, heat-shock protein gp96 was only isolated from murine and human tissues and cell lines. An animal cell suspension culture process for the production of heat-shock protein gp96 by MethA tumor cell was developed for the first time in spinner flasks. Effects of culture medium and condition were studied to enhance the MethA tumor cell density and the production and productivity of heat-shock protein gp96. Initial glucose concentration had a significant effect on the heat-shock protein gp96 accumulation, and an initial glucose level of 7.0 g/L was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Cultures at an initial glutamine concentration of 3 and 6 mM were nutritionally limited by glutamine. At an initial glutamine concentration of 6 mM, the maximal viable cell density of 19.90 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 4.95 mg/L was obtained. The initial concentration of RPMI 1640 and serum greatly affected the MethA tumor cell culture process. Specifically cultures with lower initial concentration of RPMI 1640 resulted in lower viable cell density and lower heat-shock protein gp96 production. At an initial serum concentration of 8%, the maximal viable cell density of 19.18 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 5.67 mg/L was obtained. The spin rate significantly affected the cell culture process in spinner flasks, and a spin rate of 150 rpm was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Not only the cell density but also the production and productivity of heat-shock protein gp96 attained in this work are the highest reported in the culture of MethA tumor cell. This work offers an effective approach for producing heat-shock protein glycoprotein 96 from the cell culture process. The fundamental information obtained in this study may be useful for the efficient production of heat-shock protein by animal cell suspension culture on a large scale.  相似文献   

9.
The biomass production of a cyanobacterium (Nostoc sp.) in a photoreactor with a low illuminated surface area to volume ratio was improved by the reutilization of the culture medium. After six succesive utilizations the growth ofNostoc sp. amounted to 2.15 g/l with an average content in phycobiliproteins of 14.4% on dry weight basis. The procedure reported allowed an 80% increase in biomass. The cellular self-sedimentation proved to be effective for biomass separation between reutilization steps.  相似文献   

10.
In the present study laccase production potential of a photosynthetic, non nitrogen fixing cyanobacteria Arthrospira maxima (SAE-25780) was investigated for their probable use in synthetic dye decolorization which poses environmental pollution problem in aquatic bodies. A. maxima (SAE-25780) showed a constitutive production of laccase which increased up to 80% in the presence of inducer guaiacol. The optimal condition for laccase was 30 °C, 10 mM sucrose as a carbon source, 10 mM sodium nitrate as a nitrogen source, and 2 mM copper as metal activator. The partially purified laccase showed 84% and 49% decolorization potential for the two anthroquinonic dyes-Reactive Blue 4 and Remazol Brilliant Blue R, respectively (RBBR) within 96 h without any mediator. Therefore the laccase extracted from A. maxima (SAE-25780) can be used efficiently in bioremediation of synthetic dyes from paper, pulp and textile industries.  相似文献   

11.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

12.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

13.
The process parameters influencing the production of extracellular laccases by Streptomyces psammoticus MTCC 7334 were optimized in submerged fermentation. Coffee pulp and yeast extract were the best substrate and nitrogen source respectively for laccase production by this strain. The optimization studies revealed that the laccase yield was maximum at pH 7.5 and temperature 32 degrees C. Salinity of the medium was also observed to be influencing the enzyme production. An agitation rate of 175 rpm and 15% inoculum were the other optimized conditions for maximum laccase yield (5.9 U/mL). Pyrogallol and para-anisidine proved to be the best inducers for laccase production by this strain and the enzyme yield was enhanced by 50% with these inducers. S. psammoticus was able to decolourize various industrial dyes at different rates and 80% decolourization of Remazol Brilliant Blue R (RBBR) was observed after 10 days of incubation in dye based medium.  相似文献   

14.
A total of 250 chitinolytic bacteria from 68 different marine samples were screened employing enrichment method that utilized native chitin as the sole carbon source. After thorough screening, five bacteria were selected as potential cultures and identified as; Stenotrophomonas sp. (CFR221?M), Vibrio sp. (CFR173?M), Phyllobacteriaceae sp. (CFR16?M), Bacillus badius (CFR198?M) and Bacillus sp. (CFR188?M). All five strains produced extracellular chitinase and GlcNAc in SSF using shrimp bio-waste. Scanning electron microscopy confirmed the ability of these marine bacteria to adsorb onto solid shrimp bio-waste and to degrade chitin microfibers. HPLC analysis of the SSF extract also confirmed presence of 36-65?% GlcNAc as a product of the degradation. The concomitant production of chitinase and GlcNAc by all five strains under SSF using shrimp bio-waste as the solid substrate was optimized by 'one factor at a time' approach. Among the strains, Vibrio sp. CFR173?M produced significantly higher yields of chitinase (4.8 U/g initial dry substrate) and GlcNAc (4.7?μmol/g initial dry substrate) as compared to other cultures tested. A statistically designed experiment was applied to evaluate the interaction of variables in the biodegradation of shrimp bio-waste and concomitant production of chitinase and GlcNAc by Vibrio sp. CFR173?M. Statistical optimization resulted in a twofold increase of chitinase, and a 9.1 fold increase of GlcNAc production. These results indicated the potential of chitinolytic marine bacteria for the reclamation of shrimp bio-waste, as well as the potential for economic production of chitinase and GlcNAc employing SSF using shrimp bio-waste as an ideal substrate.  相似文献   

15.
In view of the increase in Saccharomyces cerevisiae mannan content, the culture medium and condition for S. cerevisiae were optimized in this study. The influence of culture medium ingredients such as carbon and nitrogen sources, inorganic ion, and enzyme activator on mannan production were evaluated using factional design. The mathematical model was established by the quadratic rotary combination design through response surface analysis. The optimized concentrations of culture medium were determined as follows: 4.98 g/100 mL, sucrose; 4.39 g/100 mL, soybean peptone; 3.10 g/100 mL, yeast extract; and 2.21 g/100 mL, glycerol. The optimized culture medium increased mannan production from 82.7 ± 3.4 mg/100 mL to 162.53 ± 3.47 mg/100 mL. The influence of original pH, inoculum size, temperature, and media volume on mannan production was evaluated and confirmed by orthogonale experimental design, with the order of effect as follows: media volume > temperature > initial pH > inoculation size. The optimized culture condition was pH, 5; inoculum size, 5 ml; temperature, 32°C; and media volume, 40 mL. The maximum mannan production increased to 258.5 ± 9.1 mg/100 mL at the optimum culture condition. It was evident that the mannan production was affected significantly by culture medium and condition optimization (p < 0.01).  相似文献   

16.
Production of biomass and extracellular polysaccharide (EPS) from psychrophilic Sporobolomyces salmonicolor AL1 in a stirred bioreactor was studied. The aspects of production technical-scale parameters, namely, bioreactor flow field, biomass and EPS production rates, oxygen mass transfer per input power, as well as important product properties, such as rheology and stability of EPS mixtures, were considered. The bioprocess was found to proceed in non-Newtonian flow with consistency coefficient rising typically to 0.03 Pa.sn and flow index declining to 0.7. Flow modeling was carried out and showed good homogenization for substrate delivery at agitation rates exceeding 400 rpm. Agitation rates lower than 400 rpm were considered counterproductive due to flow field non-uniformity. The cell density reached 5 g/l and EPS production yield reached 5.5 g/l at production rate 0.057 g EPS/l per hour (0.01 g EPS/g biomass per hour). Oxygen uptake rate and oxygen transfer rate were in the range of 0.5–1.7 mmolO2/l per hour and 2–4.7 mmolO2/l per hour, respectively. The mass transfer coefficient at reaction conditions was found to be in the range $ {K_L}a\tilde{\mkern6mu} 0.004-0.01{{\mathrm{s}}^{-1 }} $ . The bioprocess biological performance was higher at moderate agitation speed and revealed biomass diminution and cell inactivation by increasing impeller revolutions and shear rate. The product EPS was found to introduce shear-thinning behavior in water solutions with apparent viscosity of up to 30 mPa.s and to stabilize 1–2 % oil-in-water emulsions improving their lipophilic properties. The emulsion dispersion index was found to be comparable with the one of Arlacel 165, the emulsifier used in cosmetic. The long-term performance of the complex cream mixtures of the glucomannan prepared in commercial format was found promising for further application.  相似文献   

17.
Mycelium of white-rot fungi secretes laccase into the medium. It was found by cultivation on malt-agar plates that the mycelium does not produce laccase equally in all its parts. The youngest hyphae at the margins of the colony represent usually the maximum producers, whereas older hyphae produce less or none at all. An exception here isCollybia velutipes which is the weakest producer of laccase of all the fungi studied and where only the older hyphae begin to secrete it. Manometric estimation of laccase showed that maximum specific activity of laccase is achieved at the boundary between the phases of initial and linear growth and i11 some cases during the first half of linear growth. Ageing of the mycelium characterized by certain changes in its metabolism is reflected in changes of enzyme production by fungal hypha of different age.  相似文献   

18.
利用粪产碱菌Alcaligenes faecalis DL-08,进行产纤维素酶培养,在Plackett-Burman设计基础上,通过Design-Expert中心组合实验,建立了培养条件优化的二次回归模型,并通过响应曲面分析,确定了最佳培养条件。由响应面分析结果可知,产纤维素酶条件:温度37.98℃,碳氮比1∶1,接种量2%,初始p H 7,时间24 h。在此条件下,预测值OD520为1.237。经3组平行试验,OD520平均值为1.229,与模型预测值基本一致,且与未优化条件相比,纤维素酶活力提高了5.6%,可达1 303.2 U/m L。  相似文献   

19.
Biotechnology Letters - In this study, citric acid (CA) production by autochthonous Candida zeylanoides 7.12 was investigated and optimized. Response surface methodology&nbsp;(RSM) was used for...  相似文献   

20.
Increasing demand for efficient and environmentally benign oxidation technologies has resulted in a focus on the use of oxidoreductases. Laccases and tyrosinases, which utilize molecular oxygen and produce water as by-product, are particularly attractive. Simultaneous production of laccase and tyrosinase was studied in Neurospora crassa FGSC #321 as the fungal strain which has the ability to produce tyrosinase intracellularly while producing laccase extracellularly. Using one-variable-at-a-time experiments and a Taguchi orthogonal L9 array demonstrated that a Vogel minimal medium containing 2.5% sucrose at pH 6.5 and 25?°C with no agitation or oxygen purging were the optimum conditions for N. crassa FGSC #321 growth. Conditions were adjusted to obtain the highest laccase and tyrosinase production. Results indicate that the control mechanisms for the production of both enzymes in N. crassa FGSC #321 are similar but not necessarily identical. Results revealed that transferring the harvested cells from the growth medium into the phosphate buffer (pH 6.8, 0.1M) containing cycloheximide (2?μM) and fluorouracil (2?mM) and increasing the temperature to 30?°C were the best conditions for simultaneous production of laccase and tyrosinase (1278 and 410?U/g of biomass, respectively). Nonetheless, starvation at 35?°C is proposed as the most cost-effective means for inducing laccase. The N. crassa laccase was characterized by using its molecular weight, pI value, optimal pH and temperature and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号