首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

3.
Euphorbiaceae represents flowering plants family of tropical and sub-tropical region rich in secondary metabolites of economic importance. To understand and assess the genetic makeup among the members, this study was undertaken to characterize and compare SSR markers from publicly available ESTs and GSSs of nine selected species of the family. Mining of SSRs was performed by MISA, primer designing by Primer3, while functional annotation, gene ontology (GO) and enrichment analysis were performed by Blast2GO. A total 12,878 number of SSRs were detected from 101,701 number of EST sequences. SSR density ranged from 1 SSR/3.22 kb to 1 SSR/15.65 kb. A total of 1873 primer pairs were designed for the annotated SSR-Contigs. About 77.07% SSR–ESTs could be assigned a significant match to the protein database. 3037 unique SSR–FDM were assigned and IPR003657 (WRKY Domain) was found to be the most dominant FDM among the members. 1810 unique GO terms obtained were further subjected to enrichment analysis to obtain 513 statistically significant GO terms mapped to the SSR containing ESTs. Most frequent enriched GO terms were, GO:0003824 for molecular function, GO:0006350 for biological process and GO:0005886 for cellular component, justifying the richness of defensive secondary metabolites and phytomedicine within the family. The results from this study provides tangible insight to genetic make-up and distribution of SSRs. Functional annotation corresponded many genes of unknown functions which may be considered as novel genes or genes responsible for stress specific secondary metabolites. Further studies are required to understand stress specific genes accountable for leveraging the synthesis of secondary metabolites.  相似文献   

4.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

5.
Faba bean (Vicia faba L.) is an important food legume crop with a huge genome. Development of genetic markers for faba bean is important to study diversity and for molecular breeding. In this study, we used Next Generation Sequencing (NGS) technology for the development of genomic simple sequence repeat (SSR) markers. A total of 14,027,500 sequence reads were obtained comprising 4,208 Mb. From these reads, 56,063 contigs were assembled (16,367 Mb) and 2138 SSRs were identified. Mono and dinucleotides were the most abundant, accounting for 57.5 % and 20.9 % of all SSR repeats, respectively. A total of 430 primer pairs were designed from contigs larger than 350 nucleotides and 50 primers pairs were tested for validation of SSR locus amplification. Nearly all (96 %) of the markers were found to produce clear amplicons and to be reproducible. Thirty-nine SSR markers were then applied to 46 faba bean accessions from worldwide origins, resulting in 161 alleles with 87.5 % polymorphism, and an average of 4.1 alleles per marker. Gene diversity (GD) of the markers ranged from 0 to 0.48 with an average of 0.27. Testing of the markers showed that they were useful in determining genetic relationships and population structure in faba bean accessions.  相似文献   

6.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

7.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

8.
Switchgrass (Panicum virgatum L.) is a model cellulosic biofuel crop in the United States. Simple sequence repeat (SSR) markers are valuable resources for genetic mapping and molecular breeding. A large number of expressed sequence tags (ESTs) of switchgrass are recently available in our sequencing project. The objectives of this study were to develop new SSR markers from the switchgrass EST sequences and to integrate them into an existing linkage map. More than 750 unique primer pairs (PPs) were designed from 243,600 EST contigs and tested for PCR amplifications, resulting in 538 PPs effectively producing amplicons of expected sizes. Of the effective PPs, 481 amplifying informative bands in NL94 were screened for polymorphisms in a panel consisting of NL94 and its seven first-generation selfed (S1) progeny. This led to the selection of 117 polymorphic EST–SSRs to genotype a mapping population encompassing 139 S1 individuals of NL94. Of 83 markers demonstrating clearly scorable alleles in the mapping population, 79 were integrated into a published linkage map, with three linked to accessory loci and one unlinked. The newly identified EST–SSR loci were distributed in 17 of 18 linkage groups with 27 (32.5 %) exhibiting distorted segregations. The integration of EST–SSRs aided in reducing the average marker interval (cM) to 3.7 from 4.2, and reduced the number of gaps (each >15 cM) to 10 from 23. Developing new EST–SSRs and constructing a higher density linkage map will facilitate quantitative trait locus mapping and provide a firm footing for marker-assisted breeding in switchgrass.  相似文献   

9.
Public sequence databases provide a rapid, simple and cost-effective source of microsatellite markers. We analyzed 1,532 bamboo (Phyllostachys pubescens) sequences available in public domain DNA databases, and found 3,241 simple sequence repeat (SSR) loci comprising repeats of two or more nucleotides in 920 genomic survey sequences (GSSs) and 68 cDNA sequences. This corresponded to one SSR per 336 bp of GSS DNA and one SSR per 363 bp of cDNA. The SSRs consisted of 76.6 and 74.5% dinucleotide repeats, 20.0 and 22.3% trinucleotide repeats, and 3.4 and 3.2% higher-number repeats in the GSS DNA and cDNA sequences, respectively. The repeat motif AG/CT (or GA/TC) was the most abundant. Nineteen microsatellite markers were developed from Class I and Class II SSRs, showing that the limited polymorphism in Ph. pubescens cultivars and provenances could be attributed to clonal propagation of the bamboo plant. The transferability of the microsatellites reached 75.3%, and the polymorphism of loci successfully transferred was 66.7% for six additional Phyllostachys species. Microsatellite PBM014 transferred successfully to all six species, showed rich polymorphism, and could serve as species-specific alleles for the identification of Phyllostachys interspecies hybrids.  相似文献   

10.
Jun TH  Michel AP  Mian MA 《Génome》2011,54(5):360-367
Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.  相似文献   

11.
With the aim of developing additional genomic resources in safflower, a set of 41,011 ESTs of safflower were mined for the presence of SSRs. 18,773 SSR containing ESTs (SSR-ESTs) were identified and were analyzed to remove redundant sequences leading to identification of 8,810 non-redundant SSR-ESTs (categorized into 6104 singletons and 2,706 contigs) having 13,085 non-redundant SSRs. The average number of non-redundant SSRs per EST was 0.32 and they predominantly consisted of dinucleotide (57.7 %), and trinucleotide (37.7 %) repeat motifs. 500 primer pairs were designed for the non-redundant EST-SSRs of which, 151 were tested. 60 markers which gave robust amplicons, were validated in a set of 19 Carthamus lines. A subset of EST-SSR markers, having average polymorphism information content (PIC) ≥0.4 could precisely elucidate the pedigree relatedness among these lines. Further, these markers exhibited high cross-species transferability to five other wild species of Carthamus. The markers reported here would be a valuable addition to existing safflower marker resources aiding in hastening its improvement.  相似文献   

12.
Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.  相似文献   

13.
Pineapple (Ananas comosus (L.) Merrill) is the second most important tropical fruit in term of international trade. The availability of whole genomic sequences and expressed sequence tags (ESTs) offers an opportunity to identify and characterize microsatellite or simple sequence repeat (SSR) markers in pineapple. A total of 278,245 SSRs and 41,962 SSRs with an overall density of 728.57 SSRs/Mb and 619.37 SSRs/Mb were mined from genomic and ESTs sequences, respectively. 5′-untranslated regions (5′-UTRs) had the greatest amount of SSRs, 3.6–5.2 fold higher SSR density than other regions. For repeat length, 12 bp was the predominant repeat length in both assembled genome and ESTs. Class I SSRs were underrepresented compared with class II SSRs. For motif length, dinucleotide repeats were the most abundant in genomic sequences, whereas trinucleotides were the most common motif in ESTs. Tri- and hexanucleotides of total SSRs were more prevalent in ESTs than in the whole genome. The SSR frequency decreased dramatically as repeat times increased. AT was the most frequent single motif across the entire genome while AG was the most abundant motif in ESTs. Across six examined plant species, the pineapple genome displayed the highest density, substantially more than the second-place cucumber. Annotation and expression analyses were also conducted for genes containing SSRs. This thorough analysis of SSR markers in pineapple provided valuable information on the frequency and distribution of SSRs in the pineapple genome. This genomic resource will expedite genomic research and pineapple improvement.  相似文献   

14.
A set of 120 simple sequence repeats (SSRs) was developed from the newly assembled pear sequence and evaluated for polymorphisms in seven genotypes of pear from different genetic backgrounds. Of these, 67 (55.8 %) primer pairs produced polymorphic amplifications. Together, the 67 SSRs detected 277 alleles with an average of 4.13 per locus. Sequencing of the amplification products from randomly picked loci NAUPy31a and NAUpy53a verified the presence of the SSR loci. When the 67 primer pairs were tested on 96 individual members of eight species in the Rosaceae family, 61.2 % (41/67) of the tested SSRs successfully amplified a PCR product in at least one of the Rosaceae genera. The transferability from pear to different species varied from 58.2 % (apple) to 11.9 % (cherry). The ratio of transferability also reflected the closer relationships within Maloideae over Prunoideae. Two pear SSR markers, NAUpy43c and NAUpy55k, could distinguish the 20 different apple genotypes thoroughly, and UPGMA cluster analysis grouped them into three groups at the similarity level of 0.56. The high level of polymorphism and good transferability of pear SSRs to Rosaceae species indicate their promise for application to future molecular screening, map construction, and comparative genomic studies among pears and other Rosaceae species.  相似文献   

15.
16.
Analysis of Microsatellites in Citrus Unigenes   总被引:5,自引:0,他引:5  
Simple sequence repeats (SSRs) were investigated in the unigene sequences from expressed sequence tags (EST) of sweet orange (Citrus sinensis osbeck), trifoliate orange (Poncirus trifoliata Raf.) and other citrus species and cultivars. A total of 37 802 citrus unigene sequences corresponding to 23.29 Mb were searched, resulting in the identification of 8 218 SSRs. Among them there were 4 913 (59.8%) mono-, 1 419 (17.3%) di-, 1 709 (20.8%) tri-, 114 (1.39%) tetra-, 23 (0.28%) penta- and 40 (0.49%) hexa-nucleotide SSRs. The estimated frequency of SSRs was approximately 1/2.8 kb, which could be extrapolated to 1 SSR-containing unigene in 4.6 unigenes. The maximum length of the SSR ranged from 40 to 105 bp depending on the repeating numbers of the motif in the SSR. The overall average length of SSRs was 20.9 bp. The frequencies of different SSR types (di-, tri-, tetra-, and penta-nucleotide repeats) were very similar between sweet orange and trifoliate orange. The mononucelotide repeats appeared to be the most abundant SSRs within sweet orange and trifoliate orange, followed by trimeric repeats. The adenine rich repeats such as A/T, AG, AT, AAG, AAAT, AAAG, AAAT, AAAAG, AAAAT etc. were predominant in each type of SSRs (mono-, di-, tri-, tetra-, and penta-), whereas the C/G, CG, CCG repeats were less abundant. Twenty-five primer pairs flanking EST-SSR loci were designed to detect the possible polymorphism of six citrus cultivars including sweet orange and trifoliate orange. The PCR result with all these 25 primer pairs revealed the existence of polymorphism within six citrus cultivars confirming that citrus EST database could be efficiently exploited for the development of gene-derived SSR markers.  相似文献   

17.
The application of simple sequence repeat (SSR) genotyping for the characterization of genetic variation in crop plants has been hindered by ready access to useful primer pairs and potentially limited conservation of the repeat sequences among related species. In this phase of work, we report on the identification and characterization of SSRs that are conserved in Brassica napus L. (rapeseed) and its putative progenitors, B. oleracea L. (cabbage, and related vegetable types) and B. rapa (vegetable and oil types). Approximately 140 clones from a size-fractionated genomic library of B. napus were sequenced, and primer pairs were designed for 21 dinucleotide SSRs. Seventeen primer pairs amplified products in the three species and, among these, 13 detected variation between and within species. Unlike findings on SSR information content in human, no relationship could be established between the number of tandem repeats within the target sequence and heterozygosity. All primer pairs have been designed to work under identical amplification conditions; therefore, single-reaction, multiplex polymerase chain reaction (PCR) with these SSRs is possible. Once moderate numbers of primer pairs are accessible to the user community, SSR genotyping may provide a useful method for the characterization, conservation, and utilization of agricultural crop diversity.  相似文献   

18.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

19.
Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di—(26.1 %), tetra—(11.5 %), penta—(9.7 %), and hexanucleotide (3.9 %). One hundred EST–SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST–SSR markers. Based on the 29 EST–SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST–SSR markers was also found for relative species.  相似文献   

20.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号