首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   

4.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

5.
6.
The deoxyribonucleoside triphosphate (dNTP) pools that support the replication of mitochondrial DNA are physically separated from the rest of the cell by the double membrane of the mitochondria. Perturbed homeostasis of mitochondrial dNTP pools is associated with a set of severe diseases collectively termed mitochondrial DNA depletion syndromes. The degree of interaction of the mitochondrial dNTP pools with the corresponding dNTP pools in the cytoplasm is currently not clear. We reviewed the literature on previously reported simultaneous measurements of mitochondrial and cytoplasmic deoxyribonucleoside triphosphate pools to investigate and quantify the extent of the influence of the cytoplasmic nucleotide metabolism on mitochondrial dNTP pools. We converted the reported measurements to concentrations creating a catalog of paired mitochondrial and cytoplasmic dNTP concentration measurements. Over experiments from multiple laboratories, dNTP concentrations in the mitochondria are highly correlated with dNTP concentrations in the cytoplasm in normal cells in culture (Pearson R = 0.79, p = 3 × 10?7) but not in transformed cells. For dTTP and dATP there was a strong linear relationship between the cytoplasmic and mitochondrial concentrations in normal cells. From this linear model we hypothesize that the salvage pathway within the mitochondrion is only capable of forming a concentration of approximately 2 μM of dTTP and dATP, and that higher concentrations require transport of deoxyribonucleotides from the cytoplasm.  相似文献   

7.
Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNAGln and tRNAGlu respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S‐phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate‐limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.  相似文献   

8.
The effects of cyclohexanecarboxaldehyde, benzaldehyde and protocatechualdehyde on the activities of DNA polymerases α, β and E. coli DNA polymerase I were investigated. On direct addition of the aldehydes to the DNA polymerase assay mixture containing activated DNA or poly(dA) (dT)12–18 as a template, DNA polymerase α was most strongly inhibited by the aldehyde compounds, while DNA polymerases β and I were resistant to such aldehyde inhibition. On preincubation of the enzymes with aldehyde, both DNA polymerases α and β were inactivated; however, DNA polymerase β was protected from the inactivation when activated DNA was added to the preincubation mixture. The inhibition of DNA polymerase α by aldehyde was noncompetitive with regard to the substrate dNTP and competitive with regard to the template DNA. The extent of inhibition of DNA polymerase α by aldehyde was partly reduced by the addition of cysteine to the reaction mixture.  相似文献   

9.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

10.
11.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

12.
In the 13C NMR spectrum of hemoglobin A carbonylated with 13CO, separate resonances can be distinguished at 207.04 ppm and 206.60 ppm (with respect to the 13C resonance of external tetramethyl-silane) for 13Co bound to the α and β chains of the hemoglobin tetramer. A study of the 13Co derivatives of the isolated α and β chains, and of the abnormal hemoglobin MIWATE which contains α chains which are in the met [Fe(III)] form and do not bind CO, has permitted an assignment of the high field (206.60 ppm) resonance to the β chain 13CO and the low field one to the α chain 13CO. The identification of these 13Co resonances permits a study of the differences in the chemistry of the α and β heme units in intact hemoglobin. Some results on the differences in the redox behavior of these chains are included.  相似文献   

13.
Y P Loh  A Li  H A Gritsch  R L Eskay 《Life sciences》1981,29(15):1599-1605
Storage, secretion and subcellular localization of immunoreactive α -melanotropin (α -MSHi) and β -endorphin (β -ENDi) were examined in the pars intermedia of toads adapted to a black or white background. During white adaptation, there was a selective increase in storage of α -MSHi but not β -ENDi. Subcellular fractionation and release studies suggest the presence of two pools of peptides in the toad pars intermedia, each containing different molar ratios of α -MSHi and β -ENDi and regulated differently in their release.  相似文献   

14.
15.
ON THE STRUCTURE OF A NEW, FUCOSE CONTAINING GANGLIOSIDE FROM PIG CEREBELLUM   总被引:12,自引:7,他引:5  
A new ganglioside, provisionally named GLIVa, was isolated in pure form from pig cerebellum. Ganglioside GLIVa is a disialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal, β 1 → 3 GalNAc, β 1 → 4 Gal, β 1 → 4 Glc, β 1 → Cer. Fucose is α-glycosidically linked to the 2-position of external galactose and one N-acetylneuraminic acid is linked to the other one by an α, 2 → 8 linkage. Thus the total structure of ganglioside GLIVa is the following: Fuc, α 1 → 2 Gal, β 1 → 3 GalNAc, β 1 → 4 (NeuAc, α 2 48 NeuAc, α 2 → 3) Gal, β 1 → 4 Glc, β 1 → Ceramide. According to the IUPAC-IUB Commission on Biochemical Nomenclature is indicated as II3α(NeuAc)2 IV2αFuc-GgOse4Cer.  相似文献   

16.
The translation of rabbit α globin mRNA in a Krebs II ascites cellfree system was more dependent upon the K+ concentration than rabbit β globin mRNA. The optimal KCl concentration was approximately 70 mM for the synthesis of the α chain and between 80 and 90 mM for that of the β chain. With CH3 CO2K the optimum concentration for α chain synthesis was also 70 mM but the optimum for the β chain synthesis was not sharp any more and ranged from 70 mM to over 110 mM. In the range of the optimal Mg2+ concentration for the α and β globin chain synthesis the αβ ratio decreased when the Mg2+ concentration increased. In the presence of DTT and EDTA the optimal KCl concentration for both α and β globin chain synthesis decreased.  相似文献   

17.
18.
Regulation of ribonucleotide reductase (RNR) is important for cell survival and genome integrity in the face of genotoxic stress. The Mec1/Rad53/Dun1 DNA damage response kinase cascade exhibits multifaceted controls over RNR activity including the regulation of the RNR inhibitor, Sml1. After DNA damage, Sml1 is degraded leading to the up-regulation of dNTP pools by RNR. Here, we probe the requirements for Sml1 degradation and identify several sites required for in vivo phosphorylation and degradation of Sml1 in response to DNA damage. Further, in a strain containing a mutation in Rnr1, rnr1-W688G, mutation of these sites in Sml1 causes lethality. Degradation of Sml1 is dependent on the 26S proteasome. We also show that degradation of phosphorylated Sml1 is dependent on the E2 ubiquitin-conjugating enzyme, Rad6, the E3 ubiquitin ligase, Ubr2, and the E2/E3-interacting protein, Mub1, which form a complex previously only implicated in the ubiquitylation of Rpn4.  相似文献   

19.
Ehrlich Ascites Tumor (EAT) chalone has been shown to inhibit nascent DNA synthesis by inhibiting DNA polymerase α and β (Nakai, 1976), but one of the problems in studying eurkaryotic DNA replication has been the relative impermeability of the cell membrane to precursors and macromolecules; hence, to circumvent this restriction without sacrificing the integrity of the replication process, a broken cell system utilizing nuclei in aqueous media was investigated. Isolated nuclei appear to continue the process of DNA replication that was proceeding in vivo before their isolation and under optimal conditions are able to initiate new synthesis (Fraser & Huberman, 1977). The effects of partially purified EAT chalone on nascent DNA could be studied directly in this nuclear system, which excluded effects of the cell membrane, nucleotide pools and other cytosol elements. A concentration-related inhibition of [3H]thymidine triphosphate ([3H]-dTTP) incorporation was noted over a chalone range of 50–200 μg/ml. It appears that chalone can inhibit DNA polymerase α directly within the nucleus without an intermediate step such as a cell membrane receptor.  相似文献   

20.
Hemoglobin MSaskatoon (α2Aβ263tyr) has two α chains in the normal ferrous state, while its two β chains are in the ferric state. The reaction of hemoglobin MSaskatoon with carbon monoxide at pH 7 and 20 °C in the presence and absence of dithionite was studied. In the absence of dithionite only the α chains react and the combination rate is slow and similar to that of normal deoxyhemoglobin. After the addition of dithionite the rate of reaction is greatly increased initially and then decreases to a rate similar to that seen in the absence of dithionite. The dissociation of oxygen from hemoglobin MSaskatoon at pH 7 and 20 °C was found for the α subunits to be similar to that seen for normal oxyhemoglobin. This similarity in the kinetic properties of normal hemoglobin and the α subunits of hemoglobin MSaskatoon in both ligand combination and dissociation reactions indicates that the α subunits of hemoglobin MSaskatoon undergo a structural transition from a low to high affinity form on liganding. Since the β subunits react rapidly with carbon monoxide even when the α subunits are unliganded, it appears that the ligand binding sites of the β chains are uncoupled from the state of liganding of the α subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号