首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genetic diversity and relationships of 40 accessions of Ipomoea, representing ten species of series Batatas, were examined using ISSR markers and restriction-site variation in four non-coding regions of chloroplast DNA. A total of 2071 ISSR fragments were generated with 15 primers in these accessions and, on average, 52 bands per accession were amplified. Most of the primers contained dinucleotide repeats. The ISSR fragments were highly polymorphic (62.2%) among the 40 accessions studied. Restriction analysis of chloroplast (cp) DNA revealed 47 informative restriction-site and length mutations. Phylogenetic analyses of ISSR and cpDNA datasets generally revealed similar relationships at the interspecific level, but the high polymorphism of ISSRs resulted in a better separation of intraspecific accessions. However, the combined ISSR and cpDNA dataset appeared to be appropriate in resolving both intra- and interspecific relationships. Of the species examined, I. trifida was found to be the most closely related to cultivated sweetpotato, the hexaploid I. batatas, while I. ramosissima and I. umbraticola were the most distantly related to I. batatas within the series. Ipomoea triloba, hitherto considered to be one of the ancestors of sweetpotato, was only distantly related to sweetpotato based on ISSR similarity index. Received: 4 January 1999 / Accepted: 27 September 1999  相似文献   

4.
Isoprene is a naturally produced hydrocarbon emitted into the atmosphere by green plants. It is also a constituent of synthetic rubber and a potential biofuel. Microbial production of isoprene can become a sustainable alternative to the prevailing chemical production of isoprene from petroleum. In this work, sequence homology searches were conducted to find novel isoprene synthases. Candidate sequences were functionally expressed in Escherichia coli and the desired enzymes were identified based on an isoprene production assay. The activity of three enzymes was shown for the first time: expression of the candidate genes from Ipomoea batatas, Mangifera indica, and Elaeocarpus photiniifolius resulted in isoprene formation. The Ipomoea batatas isoprene synthase produced the highest amounts of isoprene in all experiments, exceeding the isoprene levels obtained by the previously known Populus alba and Pueraria montana isoprene synthases that were studied in parallel as controls.  相似文献   

5.

Background

The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied.

Methodology/Principal Findings

Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis.

Conclusions/Significance

SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV.  相似文献   

6.
Specimens in the germplasm collection at the U.S. Vegetable Laboratory, United States Department of Agriculture (USDA) in Charleston, SC, were studied to examine phylogenetic relations of the tetraploid accessions inIpomoea sectionBatatas. This collection contains tetraploidsfrom a wide geographic range and most were tentatively identified by the collector asI. trifida. This study shows that corolla and sepal traits may be used to distinguish the tetraploidsfrom known specimens ofI. trifida (diploid) andI. batatas (hexaploid). All but one tetraploid accession examined (CH67.50) had corolla tubes and sepals shaped likeI. batatas and more closely resembled that species thanI. trifida. Use of corolla tube diameter allowed the hexaploidI. batatas and tetraploid accessions to be distinguished fromI. trifida because the corolla tubes were wider immediately above the calyx. Differences in sepal shape were quantified using the angle at the sepal apex. This angle was consistently obtuse in theI. batatas hexaploids and the tetraploids, but was acute in theI. trifida accessions. Due to similarities in sepal and corolla traits, these tetraploids should be reidentified as tetraploidI. batatas, a cytological race of the hexaploid I. batatas (the sweetpotato).  相似文献   

7.
8.
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.  相似文献   

9.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

10.
《Gene》1997,187(2):211-215
A nested polymerase chain reaction (PCR) technique for amplifying a fragment of the gene (GH) encoding teleost growth hormone has been developed. Using this technique, a fragment of the pufferfish, Fugu rubripes and Arothron maculatus; dwarf gourami, Colisa lalia; guppy, Poecilia reticulata; and goldfish, Carassius auratus GH genes were cloned. The Fugu rubripes (Fugu) gene fragment was used to isolate the GH gene from a Fugu genomic library. The complete nucleotide sequence of a 8.5-kb SacI genomic fragment containing the Fugu GH gene has been determined. The GH gene spans 2.5 kb from the first codon to polyadenylation signal, and contains six exons and five introns similar to the GH genes of salmonids, tilapia, barramundi, flounder and yellowtail. The GH introns contain microsatellite and satellite sequences. The microsatellites found in the fifth intron of the GH gene are also present in the corresponding introns of tilapia, barramundi and flounder GH genes. Southern analysis revealed that the GH gene is a single-copy gene in the Fugu. The promoter region of the Fugu GH gene contains conserved sequences that are likely to be involved in the pituitary-specific expression of the gene. A phylogenetic tree of nucleotide (nt) sequences of all known teleost GH genes has been inferred using the distance matrix method. The topology of this tree reflects the major phylogenetic groupings of teleosts. The intron patterns and repetitive sequences of GH genes can serve as useful natural markers for the classification and phylogenetic studies of teleosts.  相似文献   

11.
Symptoms of leaf and stem chlorosis and plant stunting were common in sweetpotato plants (Ipomoea batatas) in farmers’ fields in two widely separated locations, Kununurra and Broome, in the tropical Kimberley region in the state of Western Australia in 2003 and 2004. In the glasshouse, progeny plants developed similar symptoms characteristic of phytoplasma infection, consisting of chlorosis and a stunted, bushy appearance as a result of proliferation of axillary shoots. The same symptoms were reproduced in the African sweetpotato cv. Tanzania grafted with scions from the plant Aus1 with symptoms and in which no viruses were detected. PCR amplification with phytoplasma‐specific primers and sequencing of the 16S‐23S rRNA gene region from two plants with symptoms, Aus1 (Broome) and Aus142A (Kununurra), revealed highly identical sequences. Phylogenetic analysis of the 16S rRNA gene sequences obtained from previously described sweetpotato phytoplasma and inclusion of other selected phytoplasma for comparison indicated that Aus1 and Aus142A belonged to the Candidatus Phytoplasma aurantifolia species (16SrII). The 16S genes of Aus1 and Aus142A were almost identical to those of sweet potato little leaf (SPLL‐V4) phytoplasma from Australia (99.3%–99.4%) but different from those of the sweetpotato phytoplasma from Taiwan (95.5%–95.6%) and Uganda (SPLL‐UG, 90.0%–90.1%). Phylogenetically, Aus1, Aus142A and a phytoplasma previously described from sweetpotato in the Northern Territory of Australia formed a group distinctly different from other isolates within Ca. Phytoplasma aurantifolia species. These findings indicate that novel isolates of the 16SrII‐type phytoplasma pose a potential threat to sustainable sweetpotato production in northern Australia.  相似文献   

12.
13.
14.
Abstract: Phylogenetic trees based on group I intron sequences and on internal transcribed spacer (ITS) sequences of mycobiont ribosomal genes were calculated and compared. Eight cetrarioid and four non-cetrarioid species of the Parmeliaceae were compared. The phylogeny based on group I intron sequences is partly congruent with the ITS sequence phylogeny. Group I intron sequences are presumably less informative for infragenic studies. The introns have a length of 214–233 nucleotides, and differ at up to 33% of the bases between species. All introns analysed are located between the positions 1516 and 1517 of the fungal 18S ribosomal RNA gene. Cetrarioid lichens form a non-homogeneous group within theParmeliaceae according to both group I intron and ITS sequences.  相似文献   

15.
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.  相似文献   

16.
Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.  相似文献   

17.
The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.  相似文献   

18.
19.
《Gene》1997,184(1):65-71
In Xenopus laevis the single-stranded DNA binding protein imported into the mitochondria consists of two highly related polypeptides. The establishment of the genomic nucleotide sequences reveals that they are encoded by two different genes, XLSSB1 and XLSSB2. The deduced amino acid sequence is identical to the direct amino acid sequence determined by Edman degradation of the mitochondrial polypeptides [Ghrir, R., Lecaer, J.P., Dufresne, C. and Gueride, M. (1991) Primary structure of the two variants of Xenopus laevis mtSSB, a mitochondrial DNA binding protein. Arch. Biochem. Biophys. 291, 395–400]. Both genes are organized in seven exons and six introns, the sequence of the peptide leader is interrupted by an intervening sequence (intron 2). The exon/intron junctions are in exactly conserved positions, splitting the same codon. A high level of identity is observed between corresponding introns of the two genes over part or most of their lengths. Structural features of intronic sequences reveal multiple rearrangements and exchanges during the evolution of X. laevis species. A CCAAT box and the potential regulatory elements NRF-2 and Sp 1 are observed in the 5′-flanking region of both genes. During oogenesis, XLSSB gene expression is correlated with the replicative activity of the mitochondrial DNA.  相似文献   

20.
 The objectives of the present study were to evaluate the inheritance and nucleotide sequence profiles of microsatellite genetic markers in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] and its putative tetraploid and diploid ancestors, and to test possible microsatellite mutation mechanisms in polyploids by direct sequencing of alleles. Sixty three microsatellite loci were isolated from genomic libraries of I. batatas and sequenced. PCR primers were designed and used to characterize microsatellite loci in two hexaploid I. batatas populations, a tetraploid Ipomoea trifida population, and a diploid I. trifida population. Nine out of the sixty three primer pairs tested yielded a clearly discernible, heritable banding pattern; five showed Mendelian segregation. All other primer pairs produced either smeared banding patterns, which could not be scored, or no bands at all in I. batatas. All of the primers which produced discernible banding patterns from I. batatas also amplified products of similar size in tetraploid and diploid I. trifida accessions. The sequence analysis of several alleles in the three species showed differences due to mutations in the repeat regions consistent with small differences in the repeat number. However, in some cases insertions/deletions and base substitutions in the microsatellite flanking regions were responsible for polymorphisms in both polyploid and diploid species. These results provide strong empirical evidence that complex genetic mechanisms are responsible for SSR allelic variation in Ipomoea. Four I. batatas microsatellite loci showed polysomic segregation fitting tetraploid segregation ratios. To our knowledge this is the first report of segregation ratios for microsatellites markers in polyploids. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号