首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organic–inorganic nanocomposite which combined mesoporous silica SBA-15 and chitosan using a carboxyl functionalized ionic liquid as the bridging agent (SBA@CS) was successfully fabricated, and was used to immobilize porcine pancreas lipase (PPL) by physical adsorption, cross-linking and metal–organic coordination, respectively. The as-prepared carriers were characterized by scanning electron microscopy, Fourier transform infrared and energy-dispersive X-ray spectroscopy. Compared with immobilization onto the pure mesoporous silicon material SBA-15, all the batches of PPL immobilized onto organic–inorganic nanocomposites showed higher activity, improved stability and reusability as well as better resistance to pH and temperature changes. Among the immobilized PPLs, immobilization based on Co2+ coordination (SBA@CS-Co-PPL) produced the best enzymatic properties. The maximum immobilization efficiency and specific activity of 79.6% and 1975.8 U g−1 were obtained with SBA@CS-Co, separately. More importantly, the activity of immobilized enzyme can still maintain 84.0% after 10 times of reuse. These results demonstrated that thus prepared organic–inorganic nanocomposite could be an ideal carrier for enzyme immobilization by metal–organic coordination.  相似文献   

2.
A novel amperometric immunosensor for human chorionic gonadotropin (HCG) assay has been fabricated through incorporating toluidine blue (TB) and hemoglobin (Hb) on the multiwall carbon nanotube (MWNT)-chitosan (CS) modified glassy carbon electrode, followed by electrostatic adsorption of a conducting gold nanoparticles (nanogold) film as sensing interface. The MWNT-CS matrix provided a congenial microenvironment for the immobilization of biomolecules and promoted the electron transfer to enhance the sensitivity of the immunosensor. Due to the strong electrocatalytic properties of Hb and MWNT toward H(2)O(2), the Hb and MWNT significantly amplified the current signal of the antigen-antibody reaction. The immobilized toluidine blue as an electron transfer mediator exhibited excellent electrochemical redox property. After the immunosensor was incubated with HCG solution, the access of activity center of the Hb to toluidine blue was partly inhibited, which leaded to a linear decrease in the catalytic efficiency of the Hb to the oxidation of immobilized toluidine blue by H(2)O(2) over HCG concentration ranges from 0.8 to 500 mIU/mL. Under optimal condition, the detection limit for the HCG immunoassay was 0.3 mIU/mL estimated at a signal-to-noise ratio of 3. Moreover, the proposed immunosensor displayed a satisfactory stability and reproducibility.  相似文献   

3.
A novel label-free voltammetric immunosensor for sensitive detection of β-lactoglobulin using graphene modified screen printed electrodes has been developed. The derivatization of the graphene electrode surface was achieved by electrochemical reduction of in situ generated 4-nitrophenyl diazonium cations in aqueous acidic solution, followed by electrochemical reduction of the terminal nitro groups to amines. The electrochemical modification protocol was optimized in order to generate monolayer of nitrophenyl groups on the graphene surface without complete passivation of the electrode. Unlike the reported method for graphene functionalization, we demonstrated here the ability of the electrografting of aryl diazonium salt to attach an organic film to the graphene surface in a controlled manner by choosing the suitable grafting protocol. Next, the amine groups on the graphene surface were activated using glutaraldehyde and used for the covalent immobilization of β-lactoglobulin antibodies. Cyclic and differential pulse voltammetry carried out in an aqueous solution containing [Fe(CN)(6)](3-/4-) redox pair have been used for the immunosensor characterization. The results demonstrated that the DPV reduction peak current of [Fe(CN)(6)](3-/4-) decreased linearly with increasing the concentration of β-lactoglobulin due to the formation of antibody-antigen complex on the modified electrode surface. The immunosensor obtained using this novel approach enabled a detection limit of 0.85pgmL(-1) and a dynamic range from 1pgmL(-1) to 100ngmL(-1) of β-lactoglobulin in PBS buffer. In addition, the immunosensor evaluated in different samples including cake, cheese snacks, a sweet biscuit, showing excellent correlation with the results obtained from commercially enzyme-linked immunosorbent assay (ELISA) method.  相似文献   

4.
5.
A sensitive electrochemiluminescence (ECL) biosensor for cholesterol detection based on multifunctional core–shell structured microspheres (Fe3O4@SiO2–Au@mpSiO2) is reported. This microsphere consisted of a core of silica-coated magnetite nanoparticle, an active transition layer of gold nanoparticles and a mesoporous silica shell. Scanning electron microscopy was employed to observe the morphology of the nanomaterials and transmission electron microscopy was used to further confirm the subtle structure of Fe3O4@SiO2–Au@mpSiO2. The microspheres possessed a large surface area that increased enzyme loading, and an active transition layer gold nanoparticles enhanced the ECL signal. They were used to immobilize cholesterol oxidase for cholesterol detection with a high sensitivity, low detection limit and wide linear range. The linear range was from 0.83 to 2.62 mM with a detection limit of 0.28 µM (S/N = 3). Moreover, the reproducibility, stability and selectivity of the biosensor were established.  相似文献   

6.
Bioprocess and Biosystems Engineering - The Figs. 2, 4 and 5 were published wrongly in this paper, due to inadvertent compilation of figures during uploading the paper.  相似文献   

7.
Aluminum, classified as one of the toxic heavy metals, has a recommended daily consumption limit of 3–10 mg, as specified by the World Health Organization (WHO). Herein, the selective and sensitive aluminum(III) fluorescence sensor based on TMU-16 metal–organic frameworks (MOFs) in aqueous medium, is reported. A sensing pathway was found via the cation exchange between aluminum(III) and zinc(II) ions, and caused selectivity and sensitivity detection of aluminum(III) with a 5–100 ppm linear range and 1.99 ppm limit of detection (LOD). This sensor offers the advantage of accurately determining the concentration range of aluminum(III) ions. At low concentrations, only fluorescence quenching was observed, while at higher concentrations, fluorescence emission not only undergoes quenching but also exhibits a blue shift in wavelength. Notably, the sensor demonstrates no interference from cation solutions of mercury(II), zinc(II), nickel(II), lead(II), cobalt(II), cadmium(II), silver(I), chromium(III), and iron(III). Another significant feature of this sensor is its selectivity toward copper(II) and aluminum(III) ions, due to quenching fluorescence in the presence of copper(II) ion. The results presented the sensor's selectivity toward copper(II) at low concentrations and aluminum(III) at high concentrations.  相似文献   

8.
This paper reports a label-free electrochemical immunosensor for the determination of aflatoxin B1 (AFB1), which is based on a gold electrode modified by a biocompatible film of carbon nanotubes/poly(diallyldimethylammoniumchloride)/Pd–Au nanoparticles (CNTs/PDDA/Pd–Au). The nanocomposite was characterized by transmission electron microscopy and the electrochemical behavior of modified electrodes was investigated by cyclic voltammetry. The CNTs/PDDA/Pd–Au nanocomposites film showed good electron transfer ability, which ensured high sensitivity to detect AFB1 in a range from 0.05 to 25 ng mL−1 with a detection limit of 0.03 ng mL−1 obtained at 3σ (where σ is the standard deviation of the blank solution, n = 10). The proposed immunosensor provides a simple tool for AFB1 detection. This strategy can be extended to any other antigen detection by using the corresponding antibodies.  相似文献   

9.
To investigate how the level of microbial activity in grassland soils affects plant–microbial competition for different nitrogen (N) forms, we established microcosms consisting of a natural soil community and a seedling of one of two co-existing grass species, Anthoxanthum odoratum or Festuca rubra. We then stimulated the soil microbial community with glucose in half of the microcosms and followed the transfer of added inorganic (15NH415NO3) and organic (glycine-2-13C-15N) N into microbial and plant biomass. We found that microbes captured significantly more 15N in organic than in inorganic form and that glucose addition increased microbial 15N capture from the inorganic source. Shoot and root biomass, total shoot N content and shoot and root 15N contents were significantly greater for A. odoratum than F. rubra, whereas F. rubra had higher shoot and root N concentrations. Where glucose was not added, A. odoratum had higher shoot 15N content with organic than with inorganic 15N addition, whereas where glucose was added, both species had higher shoot 15N content with inorganic than with organic 15N. Glucose addition had equally negative effects on shoot growth, total shoot N content, shoot and root N concentrations and shoot and root 15N content for both species. Both N forms produced significantly more shoot biomass and higher shoot N content than the water control, but the chemical form of N had no significant effect. Our findings suggest that plant species that are better in capturing nutrients from soil are not necessarily better in tolerating increasing microbial competition for nutrients. It also appears that intense microbial competition has more adverse effects on the uptake of organic than inorganic N by plants, which may potentially have significant implications for interspecific plant–plant competition for N in ecosystems where the importance of organic N is high and some of the plant species specialize in use of organic N.  相似文献   

10.
Glyphosate, the most used herbicide in the world, has a residue problem that cannot be ignored. However, glyphosate itself does not have fluorescence emission and lacks the conditions for fluorescence detection. In this work, a rapid and selective fluorescence detection method of glyphosate was designed by an ‘on–off–on’ fluorescent switch based on a luminous covalent organic framework (L-COF). Only the fixed concentration of Fe3+ as an intermediate could trigger the fluorescent switch and no incubation step was required. The proposed method showed good accuracy with a correlation coefficient of 0.9978. The method's limits of detection and quantitation were 0.88 and 2.93 μmol/L, which were lower than the maximum allowable residue limits in some regulations. Environmental water samples and tomatoes were selected as actual samples to verify the application in a complex matrix. A satisfactory mean recovery from 87% to 106% was gained. Furthermore, Fe3+ could induce fluorescence quenching of L-COF through the photo-induced electron transfer (PET) effect, while the addition of glyphosate could block the PET effect to achieve detection. These results demonstrated the proposed method had abilities to detect glyphosate and broaden the application of L-COF.  相似文献   

11.
In this paper, an electrochemical sensor for 17β-estradiol (E2) based on the molecular imprinting polymer (MIP) membranes had been constructed. 6-mercaptonicotinic acid (MNA) and E2 were first assembled on the surface of platinum nanoparticles-modified glassy carbon electrode (PtNPs/GCE) by the formation of Pt-S bonds and hydrogen-bonding interactions, and subsequently the polymer membranes were formed by electropolymerization. Finally, a novel molecularly imprinted sensor (MIS) was obtained after removal of E2. Experimental parameters such as deposition time, scan cycles, pH value and accumulation condition were optimized. Under optimal conditions, the MIS exhibited a large adsorption capacity and high selectivity. A good linearity was obtained in the range of 3.0×10(-8)-5.0×10(-5)molL(-1) (r=0.996) with an estimated detection limit of 1.6×10(-8)molL(-1). MIS had been successfully used to analyze E2 in water samples without complex pretreatment. Meanwhile, the average recoveries were higher than 93.9% with RSD<3.7%. All results above reveal that MIS is an effective electrochemical technique to determine E2 real-time in complicated matrix.  相似文献   

12.
A unique luminescent lanthanide metal–organic framework (LnMOF)–based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M−1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern–Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 μM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.  相似文献   

13.
14.
Overoxidized polypyrrole/multi-walled carbon nanotubes (OPPy/MWNTs) modified electrode has been developed for sensitively detecting dopamine (DA). OPPy films developed outside MWNTs might have a porous morphology. Thus, OPPy/MWNTs films developed by this method do not reject ascorbic acid (AA). However, OPPy/MWNTs modified electrode shows largely enhancing oxidative current responses of DA. When combined with liquid chromatography, it not only obtains a low detection limit of 7.5 × 10?10 mol L?1 for DA, but also improves the selectivity of DA detection. Mechanisms for the enhancement are also well discussed in this paper. With this approach, microdialysis has been employed for successful assessment of DA in rat striatum.  相似文献   

15.
A novel bionanocomposite, horse radish peroxidase- gold-nanoparticle–Calcium carbonate (HRP-AuNPs-CaCO3), hybrid material was encapsulated by silica sol on a glassy carbon electrode (GCE). The fabricated modified electrode was used as a novel voltammetric sensor for electrochemical sensing of anti-HIV replication drug i.e. deferiprone. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM). Results obtained from the voltammetric measurements show that HRP-AuNPs-CaCO3 modified GCE offers a selective and sensitive electrochemical sensor for the determination of deferiprone. Under experimental conditions, the proposed voltammetric sensor has a linear response range from 0.01 to 10,000 μM with a detection limit of 0.01 μM. Furthermore, the fabricated sensor was successfully applied to determine deferiprone level in spiked urine and serum samples.  相似文献   

16.
Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications.  相似文献   

17.
A "turn-on" photoelectrochemical sensor for Hg(2+) detection based on thymine-Hg(2+)-thymine interaction is presented by using a thymine-rich oligonucleotide film and a double-strand DNA intercalator, Ru(bpy)(2)(dppz)(2+) (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) as the photocurrent signal reporter. The presence of Hg(2+) induces the formation of a double helical DNA structure which provides binding sites for Ru(bpy)(2)(dppz)(2+). The double helical structure was confirmed by circular dichroism and fluorescence measurements. Under the optimized conditions, a linear relationship between photocurrent and Hg(2+) concentration was obtained over the range of 0.1 nM to 10 nM Hg(2+), with a detection limit of 20 pM. Interference by 10 other metal ions was negligible. Analytical results of Hg(2+) spiked into tap water and lake water by the sensor were in good agreement with mass spectrometry data. With the advantages of high sensitivity and selectivity, simple sensor construction, low instrument cost and low sample volume, this method is potentially suitable for the on-site monitoring of Hg(2+) contamination.  相似文献   

18.
We have evaluated photoeffects of UV-B, UV-A and PAR radiation on dissolved organic matter (DOM). Photochemical production of dissolved inorganic carbon (DIC) was measured in sterile lake water from Sweden and Brazil after 6 hours of sun exposure. Tubes were exposed to four solar radiation regimes: Full-radiation, Full-radiation minus UV-B, Full-radiation minus UV-B and UV-A (PAR) and darkness.In both areas, lakes with most DOC (varying between 3 and 40 mg C l-1) were highly humic, resulting in high UV-B attenuation coefficients (Kd = 5–466 m-1). Under Full-radiation, photooxidative DIC-production varied from 0.09 to 1.7 mg C l-1per 6 h, without UV-B from 0.07 to 1.4 mg C l-1 and with PAR only from 0.02 to 0.7 mg C l-1. UV-B radiation explains a minor part (17%) of the photoooxidative DIC-production, while UV-A and PAR have larger effects (39% and 44%, respectively). Photooxidation was proportional to DOC-content and DIC-production was positively related to decrease in DOC and to loss of absorbance at 250 nm. There was no significant difference in DOC and radiation normalized DIC-production between Swedish and Brazilian lakes. The UV-B dose during incubations was approximately 3 times higher in Brazil compared to Sweden, while UV-A and PAR doses were similar. We conclude that DOC from tropical and temperate freshwaters do not seem to differ with respect to sensitivity to photooxidation.  相似文献   

19.
A 1,8-naphthalimide–Cu(II) ensemble was rationally designed and synthesized as a new turn-on fluorescent probe utilizing the ‘chemosensing ensemble’ method for detections of thiols (Cys, Hcy and GSH) with high selectivity over other α-amino acids at pH 7.4 in organic aqueous media (EtOH/HEPES, v/v = 9:1). The recognition mechanism was attributed to the remove Cu(II) from the 1,8-naphthalimide–Cu(II) ensemble by thiols and the release of flurescence of ligand 1. Remarkable fluorescence enhancements were therefore observed in the sensing process of thiols by the 1,8-naphthalimide–Cu(II) ensemble. Furthermore, the 1,8-naphthalimide–Cu(II) ensemble was successfully applied to the fluorescence imaging of thiols in CHO cells with high sensitivity and selectivity.  相似文献   

20.
While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号