首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A variant of apolipoprotein E, denoted apo E3-Leiden, has been identified in a 41-year-old male suffering from type III hyperlipoproteinemia with xanthomatosis. Apo E3-Leiden focus in the E3 position. In contrast with normal apo E3, apo E3-Leiden is defective in binding to the low density lipoprotein (LDL) receptor and does not contain cysteine as evaluated by cysteamine treatment of very low density lipoprotein followed by isoelectric focusing and conventional protein staining and by amino acid analysis. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, apo E3-Leiden displays an electrophoretic mobility intermediate to that of normal apo E3 and apo E2 (Arg158Cys). The mother and four siblings of the proband also have apo E3-Leiden and hyperlipoproteinemia type III; three of them with xanthomatosis. Two siblings do not show apo E3-Leiden in their VLDL fraction and do not have hyperlipoproteinemia type III. In the VLDL fractions of all affected family members only the presence of apo E3-Leiden could be detected after cysteamine treatment and isoelectric focusing followed by conventional protein staining. However, isoelectric focusing of cysteaminetreated sera followed by immunoblotting, using anti-apo E antiserum as first antiserum, demonstrates the presence of low amounts of normal apo E3 in addition to apo E3-Leiden in serum of the affected family members. These results indicate that all affected family members are heterozygotes E3/E3-Leiden and suggest that in this family type III hyperlipoproteinemia is transmitted as a dominant trait.  相似文献   

2.
Apolipoprotein E (apoE) is important in the modulation of the catabolism of chylomicron and very low density lipoprotein (VLDL) remnants. ApoE has three major genetically determined isoproteins in plasma, designated apoE-2, apoE-3 and apoE-4, with homozygosity for the allele coding for apoE-2 being associated with dysbetalipoproteinemia or type III hyperlipoproteinemia (HLP). We describe a new variant of apoE, apoE-1Harrisburg, which is, in contrast to apoE-2, dominantly associated with type III HLP. Five of twelve members of the affected kindred are heterozygous for the mutant form of apoE, and four of the five have type III HLP, while the fifth member has dysbetalipoproteinemia on diet therapy. Neuraminidase digestion, which removes charged sialic acid residues, did not alter the electrophoretic position of the apoE-1Harrisburg isoprotein, indicating that the altered charge of apoE-1Harrisburg was not due to sialic acid addition to the apolipoprotein. Cysteamine modification, which adds a positively charged group to cysteine, resulted in a shift of apoE-1Harrisburg from the E-1 to the E-2 isoform position, indicating that there is one cysteine in apoE-1Harrisburg as is the case for apoE-3. These results are consistent with apoE-1Harrisburg originating in the allele for apoE-3 with the mutation leading to a negative two-unit charge shift. The definitive identification of a kindred with an apoE variant, apoE-1Harrisburg, dominantly associated with dysbetalipoproteinemia and type III HLP provides a unique opportunity to gain important insights into the structure-function requirements of the E apolipoprotein as well as the mechanisms by which apoE modulates lipoprotein metabolism.  相似文献   

3.
Atherosclerosis is the main cause of death in diabetes mellitus. This may at least in part be due to lipoprotein abnormalities which have been described in these patients. Apolipoprotein-E is a component of most lipoprotein fractions and plays an important role in the catabolism of VLDL. The different apolipoprotein-E phenotypes determined genetically are associated with certain hyperlipoproteinemias in a various degree in nondiabetic patients. In most cases apolipoprotein-E phenotype E2/2 is characteristic for familial dysbetalipoproteinemia. Phenotype E3/2 was found to be more frequent in hypertriglyceridemia while phenotype E4/3 was associated with hypercholesterolemia as well as with type V hyperlipoproteinemia. We studied apolipoprotein-E phenotypes and serum lipids in 141 type II diabetic patients (36 normolipidemic 41 type IIa hyperlipidemic, 32 type IIb hyperlipidemic, 24 type II hyperlipidemic, 8 type V hyperlipidemic). the phenotype E3/3 was more common in normolipidemic diabetic (77.8%) than in hyperlipoproteinemic diabetic patients (42.9%) or in the control group (57.5%). On the other hand phenotype E3/2 was more frequent in hypertriglyceridemic (50%) than in normolipidemic (5.6%) or hypercholesterolemic (hyperlipoproteinemia IIa: 4.9%, IIb: 9.4%) diabetic patients. The phenotype E4/3 was more frequent in all hyperlipoproteinemic diabetic patients, especially in those having hypercholesterolemia (34.2%) or mixed hyperlipidemia (50%). In conclusion we found a strong association between apo-E2 and hypertriglyceridemia in diabetic patients. This association was stronger than the one found in the general population. The association between apo-E4 and hypercholesterolemia in diabetic patients was similar to the one described in non-diabetic patients. We therefore conclude that type II diabetes mellitus is a possible cofactor in the apolipoprotein-E2 associated hyperlipoproteinemia.  相似文献   

4.

Background

Apolipoprotein E (apoE) is a major protein of the lipoprotein transport system that plays important roles in lipid homeostasis and protection from atherosclerosis. ApoE is characterized by structural plasticity and thermodynamic instability and can undergo significant structural rearrangements as part of its biological function. Mutations in the 136–150 region of the N-terminal domain of apoE, reduce its low density lipoprotein (LDL) receptor binding capacity and have been linked with lipoprotein disorders, such as type III hyperlipoproteinemia (HLP) in humans. However, the LDL-receptor binding defects for these apoE variants do not correlate well with the severity of dyslipidemia, indicating that these variants may carry additional properties that contribute to their pathogenic potential.

Methodology/Principal Findings

In this study we examined whether three type III HLP predisposing apoE3 variants, namely R136S, R145C and K146E affect the biophysical properties of the protein. Circular dichroism (CD) spectroscopy revealed that these mutations do not significantly alter the secondary structure of the protein. Thermal and chemical unfolding analysis revealed small thermodynamic alterations in each variant compared to wild-type apoE3, as well as effects in the reversibility of the unfolding transition. All variants were able to remodel multillamelar 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles, but R136S and R145C had reduced kinetics. Dynamic light scattering analysis indicated that the variant R136S exists in a higher-order oligomerization state in solution. Finally, 1-anilinonaphthalene-8-sulfonic acid (ANS) binding suggested that the variant R145C exposes a larger amount of hydrophobic surface to the solvent.

Conclusions/Significance

Overall, our findings suggest that single amino acid changes in the functionally important region 136–150 of apoE3 can affect the molecule''s stability and conformation in solution and may underlie functional consequences. However, the magnitude and the non-concerted nature of these changes, make it unlikely that they constitute a distinct unifying mechanism leading to type III HLP pathogenesis.  相似文献   

5.
A kindred with apolipoprotein E deficiency and a truncated lower molecular weight apoE mutant, designated apoE-3Washington, has been identified. Gel electrophoresis demonstrated complete absence of the normal apoE isoproteins and the presence of a small quantity of a lower molecular weight apoE. Plasma apoE levels in the proband were approximately 4% of normal. This marked deficiency of apoE resulted in delayed uptake of chylomicron and very low density lipoprotein (VLDL) remnants by the liver, elevated plasma cholesterol levels, mild hypertriglyceridemia, and the development of type III hyperlipoproteinemia. Sequence analysis of the patient's apoE gene revealed a single nucleotide substitution of an A for a G, which converted amino acid 210 of the mature protein, tryptophan (TGG), to a premature chain termination codon (TAG), thus leading to the synthesis of a truncated E apolipoprotein of 209 amino acids with a molecular mass of 23.88 kDa. Northern blot analysis of differentiated monocyte-derived macrophages demonstrated a mutant mRNA indistinguishable in size from normal apoE mRNA. The nucleotide substitution also resulted in the formation of a new restriction site for Mae I. Using this enzyme we were able to establish that the proband is a homozygote and that her two offsprings are heterozygous for the epsilon-3Washington allele. These data demonstrate that the striking deficiency of apoE-3Washington results in a moderate form of type III hyperlipoproteinemia. The clinical presentation also suggests a dispensable role of apoE in the nervous system and in immunoregulation.  相似文献   

6.
The molecular defect in a 24-year-old white female with severe type III hyperlipoproteinemia has been elucidated. The patient's apolipoprotein (apo) E migrated in the apoE-4 position on isoelectric focusing gels. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the apoE-4 variant had a smaller apparent molecular weight than apoE-4(Cys112----Arg). Sequence analysis of DNA amplified with the polymerase chain reaction revealed two nucleotide substitutions in the proband's apoE gene. A C to T mutation converted arginine (CGT) at position 145 of the mature protein to cysteine (TGT) thus creating the apoE-2 variant. A second G to A substitution at amino acid 13 led to the exchange of lysine (AAG) for glutamic acid (GAG), thereby adding 2 positive charge units to the protein and producing the apoE-5 variant. Computer analysis of the apoE-4Philadelphia gene revealed that the G to A mutation in exon 3 resulted in the loss of an AvaI restriction enzyme site. The second mutation, a C to T substitution in the fourth exon of the apoE gene, eliminated a cleavage site for the enzyme BbvI. Using these restriction fragment length polymorphisms as well as DNA sequence analysis we have demonstrated that the patient is homozygous for both point mutations in the apoE gene.  相似文献   

7.
A family with three heterozygote and two homozygote carriers of the rare apolipoprotein E1 isoform was detected by isoelectric focusing. One of the homozygous patients had type III hyperlipidemia, while the other showed normolipemic dysbetalipoproteinemia. Restriction fragment length analysis as well as allele specific oligonucleotides were used to identify the structural alterations forming the abnormal epsilon 1 genotype. Comparison with the most common epsilon 3 allele showed that two base exchanges A for G in codon 127 and T for G in codon 158 (Asp for Gly and Cys for Arg, respectively) are responsible for the amino acid substitution which causes the charge shift observed in isoelectric focusing. The same defects have been described in the only previously characterized apoE1 (Weisgraber et al. 1984. J. Clin. Invest. 73: 1024-1033). In addition to the study by Weisgraber and coworkers, who reported on a heterozygous patient, we here describe the metabolic and clinical consequences of a homozygosity for this rare allele. Changes in lipoprotein metabolism, as well as in clinical phenotypes, were exactly identical to those seen in patients homozygous for the epsilon 2 allele, which has in common with the epsilon 1 allele the mutation in codon 158, but lacks the substitution in codon 127. In addition, lipoprotein profiles of the epsilon 3/epsilon 1 heterozygotes were indistinguishable from those of epsilon 3/epsilon 2 heterozygotes. Therefore, we conclude that the additional mutation in codon 127 that characterizes the epsilon 1 allele is of no functional importance in vivo.  相似文献   

8.
Type III hyperlipoproteinemia (HLP) is usually associated with homozygosity for apolipoprotein (apo) E2. We identified a 30-year-old male German of Hungarian ancestry with severe type III HLP and apo E deficiency. The disease was expressed in an extreme phenotype with multiple cutaneous xanthomas. Apo E was detectable only in trace amounts in plasma but not in the different lipoprotein fractions. Direct sequencing of PCR-amplified segments of the apo epsilon gene identified a 10-bp deletion in exon 4 (bp 4037-4046 coding for amino acids 209-212 of the mature protein). The mutation is predictive for a reading frameshift introducing a premature stop codon (TGA) at amino acid 229. By western blot analysis, we found small amounts of a truncated apo E in the patient's plasma. Family analysis revealed that the proband was homozygous--and 10 of 24 relatives were heterozygous--for the mutation. Heterozygotes had, as compared to unaffected family members, significantly higher triglycerides (TG), very low-density lipoprotein (VLDL) cholesterol and a significantly higher VLDL cholesterol-to-serum TG ratio, which is indicative of a delayed remnant catabolism. We propose that the absence of a functionally active apo E is the cause of the severe type III HLP in the patient and that the mutation, even in a single dose in heterozygotes, predisposes in variable severity to the phenotypic expression of the disease.  相似文献   

9.
Role of apolipoproteins E and C in type V hyperlipoproteinemia   总被引:1,自引:0,他引:1  
Type V hyperlipoproteinemia is characterized by elevations of chylomicron (CM) and very low density lipoprotein (VLDL) triglycerides. The development of this lipid disorder involves a multitude of metabolic derangements including deficient clearance of triglycerides and/or their increased output aggravated by obesity, diabetes, alcohol intake, or use of some hormones. Some studies have suggested that the apolipoprotein E4 phenotype is involved in this dyslipoproteinemia but this concept is still a matter of controversy. Therefore, we determined the apoE phenotype in 21 patients with severe hypertriglyceridemia classified as type V. Their apoE4 gene frequency was 0.595 which is 2.6-fold higher (P less than 0.001) than that in the Finnish population. Correspondingly, their apoE3 gene frequency was lower than that in the normal population. No differences were noted in plasma lipoproteins of the apoE4 phenotypes and the other type V subjects. The apolipoprotein C-II and C-III distribution was similar to that in normolipidemic subjects. The results suggest that apoE4 may be involved in the development of type V hyperlipoproteinemia.  相似文献   

10.
The familial lipoprotein disorder type III hyperlipoproteinemia (HPL) carries a marked increase in the risk of accelerated and premature atherosclerosis, but there is considerable variation among affected individuals in susceptibility to cardiovascular disease (CVD). We studied the influence of independent risk factors for atherosclerosis in 67 patients with clinically overt type III HPL and homozygosity for apolipoprotein (apo) E2. Among the different risk factors (lipid and lipoprotein levels, age, sex, body mass index, smoking status, hypertension, and diabetes mellitus) there was only a statistically significant difference in age between 25 patients with atherosclerosis and 42 patients without atherosclerosis. Serum lipoprotein (a), [Lp, (a)], levels were 30.6% higher in the atherosclerosis group, but this was not statistically significant. We conclude that (in contrast to familial hypercholesterolemia) elevated Lp (a) concentrations may not be regarded as a component of the clinical syndrome of type III HPL.  相似文献   

11.
Type III hyperlipoproteinemia (HLP) is a genetic disorder characterized by accumulation of remnant lipoproteins in the plasma and development of premature atherosclerosis. Although receptor binding-defective forms of apolipoprotein (apo) E are the common denominator in this disorder, a number of apparent paradoxes concerning its pathogenesis still exist. However, studies in transgenic animals are resolving the mechanisms underlying this disorder. PARADOX I: Defective apoE (commonly apoE2) is essential but not sufficient to cause overt type III HLP. In fact, most apoE2 homozygotes are hypolipidemic. Studies in apoE2 transgenic models have demonstrated the impact of other genes or hormones in converting the hypolipidemia to hyperlipidemia. PARADOX II: Among apoE2 homozygotes, men are more susceptible than women to type III HLP. Transgenic studies have shown that estrogen affects both LDL receptor expression and lipolytic processing, explaining the resistance of women to this disorder until after menopause. PARADOX III: ApoE deficiency is associated with hypercholesterolemia, whereas the type III HLP phenotype is characterized by both hypercholesterolemia and hypertriglyceridemia. The hypercholesterolemia is caused by impaired receptor-mediated clearance, whereas the hypertriglyceridemia is caused primarily by impaired lipolytic processing of remnants and increased VLDL production associated with increased levels of apoE. PARADOX IV: ApoE2 is associated with recessive inheritance of this disorder, whereas other defective apoE variants are associated with dominant inheritance. Determinants of the mode of inheritance are the differential binding of apoE variants to the LDL receptor versus the HSPG/LRP complex and the preference of certain apoE variants for specific lipoproteins. Thus, the pathogenesis of this sometimes mysterious disorder has been clarified.  相似文献   

12.
13.
Ethinylestradiol (1 microgram/kg/day during 15 days) resulted in a gradual decrease of serum cholesterol, serum triglycerides (TG), very low density lipoprotein (VLDL) cholesterol and VLDL-TG in 2 postmenopausal women and 2 men with type III hyperlipoproteinemia (HLP). The turnover rate of VLDL-TG did not change. These findings contrast with previous observations in normal subjects and patients with type IV HLP. Thus, the catabolism of VLDL and VLDL-remnants increased during treatment with estrogen in type III HLP, probably by direct degradation of VLDL-remnants because in the initial days of treatment no increase of LDL-cholesterol was observed.  相似文献   

14.
Subfractions of CLDL (VLDL), Sf 100-400; CLDL2, Sf 60--100; VLDL3, Sf 20--60) and LDL (LDL), Sf 12--20; LDL2, Sf 6--12; LDL3, Sf 3--6) were isolated from the plasma of three normal, three type III and four type IV hyperlipoproteinemic subjects. In the type IV group, all VLDL subspecies were of normal composition but were increased in concentration in the order VLDL1 greater than VLDL2 greater than VLDL3. In the same subjects, although LDL2 was lowered and LDL3 increased, the total plasma LDL concentration was normal. All VLDL subfractions were elevated in the type III group, but in this case VLDL3 predominated. These subfractions were enriched in cholesteryl esters and depleted in triglyceride. In the LDL density range there was a shift of mass towards the least dense fraction, LDL1, which was of normal composition. EPR studies of the VLDL and LDL subfractions in a type IV subject demonstrated a decrease in fluidity with increasing density. The major change occurred between VLDL3 and LDL1 and was attributed to a substantial alteration in the cholesteryl ester : triglyceride ratio in the particle. A similar argument was used to explain thction in normal or type IV subjects. Particle diameters, determined by laser light-scattering spectroscopy were in good agreement with the values obtained by electron microscopy. This study provides a baseline for the examination of the relationship between the physical and metabolic properties of VLDL and LDL subfractions in type III and IV hyperlipoproteinemia.  相似文献   

15.
Type III hyperlipoproteinemia typically is associated with homozygosity for apolipoprotein (apo) E2(Arg158----Cys). Dominant expression of type III hyperlipoproteinemia associated with apoE phenotype E3/3 is caused by heterozygosity for a human apoE variant, apoE3(Cys112----Arg, Arg142----Cys). However, this apoE3 variant was not separable from the normal apoE3 in these patients' plasma because the two proteins have identical amino acid composition, charge, and molecular weight. Therefore, to determine the functional characteristics of this protein, we used recombinant DNA techniques to produce this apoE variant in bacteria. We also produced a non-naturally occurring variant, apoE(Arg142----Cys), that had only the cysteine substituted at residue 142. These two apoE variants were purified from cell lysates of the transfected Escherichia coli by ultracentrifugal flotation in the presence of phospholipid, by gel filtration chromatography, and by heparin-Sepharose chromatography. Both Cys142 apoE variants bound to lipoprotein receptors on human fibroblasts with only about 20% of normal binding activity. Therefore, cysteine at residue 142, not arginine at residue 112, is responsible for the decreased receptor binding activity of the variants. Cysteamine treatment and removal of the carboxyl-terminal domain had little effect on the binding activity, whereas both modulate the receptor binding activity of apoE2(Arg158----Cys). The mutation at residue 142 decreased the binding activity of apoE to both heparin and the monoclonal antibody 1D7 (this antibody inhibits receptor binding of apoE), whereas apoE2(Arg158----Cys), which is associated with recessive expression of type III hyperlipoproteinemia, binds normally to both. The Arg112, Cys142 variant predominantes 3:1 over normal apoE3 in the very low density lipoproteins of plasma from an affected subject, as assessed by differential reactivity with the antibody 1D7. The unique combination of functional properties of the Arg112, Cys142 variant provides a possible explanation for its association with dominant expression of type III hyperlipoproteinemia.  相似文献   

16.
Summary A 60-year-old man is reported with idiopathic hemochromatosis and type III hyperlipoproteinemia. Regular phlebotomy therapy and fenofibrate treatment favorably influenced the disorder of iron metabolism and the lipid disease. Evidence is given that both errors of metabolism are independently inherited diseases, although the symptoms of the first (idiopathic hemochromatosis) may aggravate the expression of the second (type III hyperlipoproteinemia).  相似文献   

17.
A new water-soluble color reagent, 4-N,N-dimethylaminoazobenzene-4'-isothiocyano-2'-sulfonic acid (S-DABITC), was used to identify lysine residues of antithrombin III which participate in the binding of heparin. Antithrombin, modified with S-DABITC in the presence and absence of low molecular weight heparin (Mr 5000) was reduced, carboxymethylated, and digested with trypsin. The digest was analyzed by high-performance liquid chromatography and monitored at 465 nm. In the absence of heparin, four major colored peptides (T1, T2, T3, and T4) were identified. When antithrombin was preincubated with heparin (2-fold by weight), followed by S-DABITC modification, the recovery of peptide T4 remained unchanged, but the recoveries of T1, T2, and T3 were reduced by 93, 86, and 98%, respectively. In addition, a new colored peptide, TA, appeared. Amino acid sequencing of peptides T1, T2, T3, and TA localized S-DABITC modification sites as Lys-136, Lys-125, Lys-107, and Lys-236, respectively. Thus, binding of heparin to human antithrombin diminished S-DABITC modification at Lys-107, Lys-125, and Lys-136, but at the same time enhanced S-DABITC modification at Lys-236. This phenomenon was further characterized by varying the molar ratio of heparin/antithrombin (from 0.04 to 20). The shielding of Lys-125 and Lys-136 was inversely proportional to the activation of Lys-236. At a heparin/antithrombin molar ratio of 1, the extent of shielding of Lys-125 and Lys-136 and the unmasking of Lys-236 were 25-33%. This shielding-unmasking effect correlated with enhanced antithrombin inhibition of thrombin. We conclude that Lys-107, Lys-125, and Lys-136 are situated within the heparin-binding site of human antithrombin and that binding of heparin to antithrombin causes a conformational change of antithrombin that leads to the exposure of Lys-236 for S-DABITC modification.  相似文献   

18.
19.
Apolipoprotein E2, which has an R158 for C substitution, has reduced affinity for the LDL receptor and is associated with type III hyperlipoproteinemia in humans. Consistent with these observations, we have found that following adenovirus-mediated gene transfer, full-length apoE2 aggravates the hypercholesterolemia and induces hypertriglyceridemia in E-deficient mice and induces combined hyperlipidemia in C57BL/6 mice. Unexpectedly, the truncated apoE2-202 form that has an R158 for C substitution when expressed at levels similar to those of the full-length apoE2 normalized the cholesterol levels of E-deficient mice without induction of hypertriglyceridemia. The apoE2 truncation increased the affinity of POPC-apoE particles for the LDL receptor, and the full-length apoE2 had a dominant effect in VLDL triglyceride secretion. Hyperlipidemia in normal C57BL/6 mice was prevented by coinfection with equal doses of each, the apoE2 and the apoE2-202-expressing adenoviruses, indicating that truncated apoE forms have a dominant effect in remnant clearance. Hypertriglyceridemia was completely corrected by coinfection of mice with an adenovirus-expressing wild-type lipoprotein lipase, whereas an inactive lipoprotein lipase had a smaller effect. The findings suggest that the apoE2-induced dyslipidemia is not merely the result of substitution of R158 for C but results from increased secretion of a triglyceride-enriched VLDL that cannot undergo lipolysis, inhibition of LpL activity, and impaired clearance of chylomicron remnants. Infection of E(-)(/)(-)xLDLr(-)(/)(-) double-deficient mice with apoE2-202 did not affect the plasma cholesterol levels, and also did not induce hypertriglyceridemia. In contrast, apoE2 exacerbated the hypercholesterolemia and induced hypertriglyceridemia, suggesting that the LDL receptor is the predominant receptor in remnant clearance.  相似文献   

20.
There is growing evidence that herpes simplex virus type 1 (HSV-1), together with the apolipoprotein E 4 (APOE4) allele, contribute to the pathogenesis of Alzheimer's disease (AD), although the mechanism of their interaction remains uncertain. Here we show that the combination of inherited APOE genotype and vertical transmission of HSV-1 confers a differential risk of brain infection. These risk factors are known to be associated with AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号