首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction of nitro-substituted compounds, 1,4-benzodiazepine-2-ones, dibenzo[b,f]-1,4-diaz-epines, quinolones, and quinoxalinones, byEscherichia coli cells was studied. Physicochemical methods demonstrated the formation of corresponding amines. 4-(p-Nitrophenyl)-1H-6-R-quinolones-2 were nor reduced byEscherichia coli cells. Regiospecific reduction of 2,4-dinitro-5H-l l-(p-R-phenyl)-dibenzo[b,f]-1,4-diazepines and 4-(2′-R-3′,5′-dinitro)-benzoyl-3,4-dihydroquinoxalinones-2 was shown to result in the formation of 2-nitro-4-amino-5H-11-(p-R-phenyl)-dibenzo[b,f]-1,4-diazepines and 4-(2′-R-3′-nitro-5′-amino)-benzoyl-3,4-dihydroquinoxalinones-2, respectively. Methods for microbiological reduction of nitro compounds and immobilization ofEscherichia coli cells into carrageenan and its modified forms were elaborated.  相似文献   

2.
Reduction of nitro-substituted 1,2-dihydro-3H-1,3-benzodiazepine-2-ones by E. coli cells immobilized in carrageenan was studied. The corresponding amines are the sole products with a 100% yield as compared to the native cells. Conditions for immobilization of E. coli cells in the home-produced carrageenan was worked out: the cell to carrageenan ratio is 1:10 (w/w), granulation in toluene at 0-(+)4 degrees, treatment with 0.3-0.4 M KCl. The carrageenan-immobilized cells are stable upon storage, repeated usage (after 10 cycles about 80% of the initial activity is retained), and when being used in column fermenters.  相似文献   

3.
4.
5.
6.
The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is tau = 7.95 +/- 1.02 ps for the native DHFR and tau = 20.36 +/- 1.80 ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.  相似文献   

7.
Synthesis and lysis of formate by immobilized cells of Escherichia coli   总被引:2,自引:0,他引:2  
Formate hydrogenlyase (FHL) activity was induced in a strain of Escherichia coli S13 during anaerobic growth in yeast extract-tryptone medium containing 100 mM formate. The cells obtained at the optimum growth phase were immobilized in 2.5% (w/v) agar gel when 50-60% of the whole cell FHL activity was retained. The immobilized FHL system had good storage stability and recycling efficiency. In the lysis of formate, an increase of formate concentration to 1.18M increased QH(2) (initial) value of the immobilized cell, and subsequently cells, hydrogen evolution, in general, ceased after 6 to 8 of incubation, resulting in incomplete lysis of formate. Presence of small amount of glucose (28 mM) was more or less quantitatively lysed with concomitant disappearence of glucose from the medium. Synthesis of formate from hydrogen and bicarbonate solution by the immobilized cells was also characterized. Presence of glucose (10 mM) in 50 mM bicarbonate solution stimulated formate synthesis by immobilized cells. The pH optimum range, K(m), and specific activity of the immobilized cells for the lysis of formate were 6.8-7.2 0.4M, and 66 mL/g cell-h, respectively. The cells could fix hydrogen to the extent of 24.4% (w/w) of its own wet cell mass in a 72-h reaction cycle. Potentiality of the immobilized FHL system for biotechnological exploitation was discussed.  相似文献   

8.
Escherichia coli B 10, which has high activity of tryptophan synthetase, was grown in a 50-L batch culture in order to determine in which growth phase the cells have the highest specific tryptophan productivity. Accordingly, whole cells of the stationary phase were used for immobilization in polyacrylamide beads. After immobilization, these immobilized cells had 56% activity of tryptophan synthetase compared with that of free cells. First, the properties of immobilized cells were investigated. Next, discontinuous productions of L-tryptophan were carried out by using immobilized cells. In discontinuous production of L-tryptophan by the batch, the activity remaining of immobilized cells was 76-79% after 30 times batchwise use. In continuous production of L-tryptophan with a continuous stirred tank reactor (CSTR), the activity remaining of the immobilized cells was 80% after continuous use for 50 days. The maximum productivity of L-tryptophan in this CSTR system was 0.12 g tryptophan L(-1) h(-1).  相似文献   

9.
Resting cells of Escherichia coli, immobilized in a flow-through bioreactor, coupled the oxidation of formate or hydrogen to Tc(VII) reduction and removal from solution. Cells, pregrown anaerobically in a hollow-fiber membrane bioreactor, were challenged with 50 muM Tc(VII) in a carrier solution of phosphate-buffered saline. The radionuclide accumulated within the membrane component of the reactor, corresponding to the localization of the cells. Negligible Tc removal was noted in a reactor containing a mutant deficient in active Tc(VII) reductase, when supplied with formate as an electron donor. Formate or hydrogen was supplied as the electron donor for Tc(VII) reduction to cells immobilized in reactors operated in transverse (crossflow) and direct (dead-end filtration) modes, respectively. Flow-rate activity relationships were used to compare the performance of the reactors. A flow rate of 2.4 mL h(-1) supported the removal of 50% of the Tc from solution in a reactor operated in transverse mode with formate as an electron donor. In contrast, a flow rate of 0.7 mL h(-1), supported comparable Tc removal when hydrogen was introduced to a reactor operated in direct mode. The reduced reactor efficiency, when hydrogen was used as an electron donor, could be attributed, in part, to poor delivery of the gas to the cells. The biocatalyst was highly stable in the reactor; no loss in activity was noted over 200 h of continuous use. (c) 1997 John Wiley & Sons Inc. Biotechnol Bioeng 55: 505-510, 1997.  相似文献   

10.
Summary In continuous cultures, alkaline phosphatase was synthesised and excreted for more than 250 h by immobilized growing cells in contrast to free cells for which the excretion decreased after 150 h of culture. This observed increase in alkaline phosphatase synthesis and excretion by immobilized cells may have resulted from growing conditions within the gel beads.Offprint requests to: C. Manin  相似文献   

11.
Escherichia coli K-12 cells were grown in a confined volume using microporous hollow fiber membranes. The local cell concentrations in the reactors were above 400 g dry mass/L, in excess of the predicted limit based on the specific volume of free cells determined by tracer exclusion. Cell mass synthesis and degradation rates in these reactors were measured using radioisotope labeling with (35)S. Net accumulation of cell material persisted at these high cell densities. The rates of substrate uptake and cell growth were predicted from the theory of reaction and diffusion assuming that kinetics of cell metabolism are identical for free-living and immobilized cells. This theory was tested by comparison of overall rates and by the size of the region in which cell growth occurred, measured by autoradiography. A yield coefficient of 4 +/- 1 mol sulfur/mol glucose was measured, in agreement with the value determined for free-living cells in similar conditions. Cell growth occurs in a thin layer (10-30 mum), at a rate similar to the growth rate for free cells. Volume expansion by the cells as a consequence of proliferation induces convection of cell mass out of the growth region into a region of the reactor filled with starving cells, which then accumulate in the reactor. The combination of mass-balance and spatial distribution measurements made possible by the use of radioisotope labeling enables a direct test for mass transfer limitations, the determination of the intrinsic cell kinetics, and noninvasive measurements of cell growth in immobilized cell reactors.  相似文献   

12.
Immobilization is one of the great tools for developing economically and ecologically available biocatalysts and can be applied for both enzymes and whole cells. Much research dealing with the immobilization of Escherichia coli has been published in the past two decades. E. coli in the form of immobilized biocatalyst catalyzes many interesting reactions and has been used mainly in laboratories, but also on an industrial scale, leading to the production of valuable substances. It has the potential to be applied in many fields of modern biotechnology. This paper aims to give a general overview of immobilization techniques and matrices suitable mostly for entrapment, encapsulation, and adsorption, which have been most frequently used for the immobilization of E. coli. An extensive analysis reviewing the history and current state of immobilized E. coli catalyzing different types of biotransformations is provided. The review is organized according to the enzymes expressed in immobilized E. coli, which were grouped into main enzyme classes. The industrial applications of immobilized E. coli biocatalyst are also discussed.  相似文献   

13.
14.
《Process Biochemistry》2014,49(4):655-659
An efficient biocatalytic process for the production of nicotinic acid (niacin) from 3-cyanopyridine was developed using cells of recombinant Escherichia coli JM109 harboring the nitrilase gene from Alcaligenes faecalis MTCC 126. The freely suspended cells of the biocatalyst were found to withstand higher concentrations of the substrate and the product without any signs of substrate inhibition. Immobilization of the cells further enhanced their substrate tolerance, stability and reusability in repetitive cycles of nicotinic acid production. Under optimized conditions (37 °C, 100 mM Tris buffer, pH 7.5) for the immobilized cells, the recombinant biocatalyst achieved a 100% conversion of 1 M 3-cyanopyridine to nicotinic acid within 5 h at a cell mass concentration (fresh weight) of 500 mg/mL. The high substrate/product tolerance and stability of the immobilized whole cell biocatalyst confers its potential industrial use.  相似文献   

15.
Milligram amounts of metabolites of drug candidates are required to identify toxic products. Human drug metabolites are currently produced selectively in a time- and cost-efficient manner in bioreactor systems containing recombinant Escherichia coli co-expressing a human cytochrome P450 isoenzyme/NADPH cytochrome P450 reductase (hCYP/HR) complex. For further optimization, immobilization of the catalytic system in Ca-alginate microbeads was considered. This new concept was designed for CYP3A4 with testosterone as substrate. Immobilized E. coli cells had a high maximal and homogeneously distributed biomass. Viability was stable over at least 1 week of culture and even longer during storage. Gene expression was ideally initiated 6 h after immobilization. Although immobilized E. coli cells expressed a highly functional enzyme system after 2 days, they did not metabolize testosterone, probably due to cell permeability problems resulting from immobilization. Therefore, immobilized cell membranes displaying testosterone bioconversion activity, even after long-term storage, will be used in bioreactors with high organic solvent content.  相似文献   

16.
The object of this work was to find out whether antioxidants could be used for weakening the effect of free radicals on Escherichia coli cells immobilized in polyacrylamide gel. Some of the antioxidants soluble in lipids and water (ionol, Epigid, glutathione) protected the cells against the action of free radicals produced in the process of acrylamide polymerization, and increased the viability of the immobilized bacteria.  相似文献   

17.
Summary Cells of Escherichia intermedia were immobilized by entrapment in a polyacrylamide gel and used for the enzymatic production of l-tyrosine from phenol, pyruvate, and ammonia. A preparation containing 50 mg of cells/g of gel retained 60% of its original activity. The effect of temperature, pH and substrate concentration on the activity of free cells was almost identical with the effect on immobilized cells. Phenol showed inhibition and inactivation of the catalyst at high concentration. Synthesis of l-tyrosine (up to 10 g/l) was demonstrated in batch reactors with high conversion yields (95–100%) and a maximal productivity of 2 g/l/h. In continuous reactor the catalyst showed a very high operational stability (more than 54 days without losses).  相似文献   

18.
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.  相似文献   

19.
20.
O N Pogodina 《Genetika》1978,14(12):2113-2118
An attempt to induce some forward and back mutations in two Escherichia coli strains (his- and HfrH requiring thiamine) under the action of the carcinogenic nitrosamines--dimethylnitrosamine (DMN) and diethylnitrosamine (DEN)--is described. For this purpose the cells of E. coli were treated with 5% DMN or 1% DEN for 1 hour at 37 degrees C in 0.14 M NaCl. It was shown that the sensitivity of both strains to both nitrose compounds was not the same. DEN was 5-fold as toxic as DMN for the E. coli cells. DMN and DEN induced neither mutations of resistance to 10(-3) M valine, nor reversions in histidine-dependent strain. These mutations were obtained after the cells were treated with 0.1 M NaNO2. Lethal effects of DMN increased more than in 5 times and the toxicity of DEN did not change in hydroxylating mixture, in which nitrosamines derived to active compounds. Under these conditions both carcinogenes showed a mutagenic activity. DEN proved to be about twice as strong mutagenically as DMN. Thus, in our experiments we could see that DMN and DEN could induce both forward and back mutations in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号