首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: The suitability of genetic fingerprinting to study the microbiological basis of anaerobic bioreactor failure is investigated. METHODS AND RESULTS: Two laboratory-scale anaerobic expanded granular sludge bed bioreactors, R1 and R2, were used for the mesophilic (37 degrees C) treatment of high-strength [10 g chemical oxygen demand (COD) l(-1)] synthetic industrial-like wastewater over a 100-day trial period. A successful start up was achieved by both bioreactors with COD removal over 90%. Both reactors were operated under identical parameters; however, increased organic loading during the trial induced a reduction in the COD removal of R1, while R2 maintained satisfactory performance (COD removal >90%) throughout the experiment. Specific methanogenic activity measurements of biomass from both reactors indicated that the main route of methane production was hydrogenotrophic methanogenesis. Terminal restriction fragment length polymorphism (TRFLP) analysis was applied to the characterization of microbial community dynamics within the system during the trial. The principal differences between the two consortia analysed included an increased abundance of Thiovulum- and Methanococcus-like organisms and uncultured Crenarchaeota in R1. CONCLUSIONS: The results indicated that there was a microbiological basis for the deviation, in terms of operational performance, of R1 and R2. SIGNIFICANCE AND IMPACT OF THE STUDY: High-throughput fingerprinting techniques, such as TRFLP, have been demonstrated as practically relevant for biomonitoring of anaerobic reactor communities.  相似文献   

2.
京津冀区域市政污水厂活性污泥种群结构的多样性及差异   总被引:2,自引:0,他引:2  
【背景】活性污泥中微生物的种群结构影响着污水生物处理的高效性及稳定性,是有效保证污水处理效果的关键。【目的】研究活性污泥中细菌的群落结构组成及多样性,并分析相应菌群的主要功能,旨在更好地发挥细菌的净化作用、保持污水处理过程的稳定及提高污水的处理效率。【方法】以京津冀区域内典型市政污水厂活性污泥为研究对象,通过IlluminaMiSeq高通量测序及实时定量PCR技术,对5个污水厂活性污泥的微生物种群结构特征进行了详细解析,研究不同工艺参数下活性污泥中优势种群及脱氮菌群丰度的差异。【结果】5个污水厂活性污泥种群结构具有一定差异,其中Hengshui (HS)厂污泥的群落结构受温度的影响最大,而Shahe (SH)、Daoxianghu (DXH)、Nangong(NG)厂活性污泥群落结构则受总氮、总磷与氨氮的共同影响,氨氮对SH厂活性污泥种群结构影响最大。DXH、NG和HS厂污泥中优势菌均为Anaerolineaceae,而SH和Hejian (HJ)厂的优势菌则为Saprospiraceae与Lactobacillus。活性污泥中反硝化菌丰度最高的为HJ厂,丰度最低的为HS厂,反硝化功能基因nirS比nirK分布更为广泛。【结论】对于不同污水厂,影响其活性污泥群落结构组成的环境因素也是不同的,并且特殊的进水水质也会对污泥菌群组成和生物多样性产生影响。  相似文献   

3.
The microbial composition in a pulp and paper wastewater aerated lagoon system was analysed using fluorescence in situ hybridisation (FISH) to gain further understanding of the effect of substrate composition on microbial diversity for improved management of wastewater treatment systems. Few experiments have been conducted to tease apart the factors influencing the composition and abundance of certain groups within these wastewaters. Specific probes were used to investigate and enumerate the different bacterial groups present at particular stages through the treatment system over an extended period. Community composition and abundance of specific groups differed through the system however temporal stability was retained despite significant variability in the wastewater. Middle stream wastewater samples were enriched to explore the impact of different carbon/nitrogen/phosphorus (C:N:P) ratios on community composition and provide functionality to groups of micro-organisms within the microbial consortia. Nitrogen and phosphorus conditions did not impact community composition of methanol-fed cultures, which exhibited a dominance of Betaproteobacteria (>75%), namely Methylotrophic bacteria. This was confirmed through 16S rRNA gene sequencing and specific FISH probing, reflecting population observations at the beginning of the treatment system. We conclude that the nutrient and carbon combinations used in the enrichments created an interactive effect, altering the community composition and mimicking the main substrate load in the different stages of the treatment system. Finally, pulp and paper wastewater microbial composition was highly variable across the treatment system but was stable within the time sampled, with the enrichments emulating the substrate loads in the full scale system.  相似文献   

4.
The reproducibility of low-temperature anaerobic biological wastewater treatment trials was evaluated. Two identical anaerobic expanded granular sludge bed bioreactors were used to treat synthetic volatile fatty acid-based industrial wastewater under ambient conditions (18-20 degrees C) and to investigate the effect of various environmental perturbations on reactor performance and microbial community dynamics, which were assessed by chemical oxygen demand removal or effluent volatile fatty acid determination and terminal restriction fragment length polymorphism analysis, respectively. Methanogenic activity was monitored using specific methanogenic activity assays. Reactor performance and microbial community dynamics were each well replicated between Reactor 1 and Reactor 2. Archaeal dynamics, in particular, were associated with reactor operating parameters. Terminal restriction fragment length polymorphism data suggested dynamic acetoclastic and hydrogenophilic methanogenic populations and were in agreement with temporal specific methanogenic activity data. Putative psychrophilic populations were observed in anaerobic bioreactor sludge for the first time.  相似文献   

5.

In this study, two parallel lab-scale anaerobic membrane bioreactors (AnMBRs), one of which was dosed with polyaluminum chloride (PAC) for membrane fouling control, were operated for treating excess activated sludge collected from a wastewater treatment plant (WWTP). The AnMBRs were inoculated with anaerobic digested sludge collected from an anaerobic digester of another WWTP. The microbial community of digested sludge and cake layer in AnMBRs, as well as that of excess sludge, was analyzed through polymerase chain reaction coupled with denaturing gradient gel electrophoresis (PCR-DGGE) and Illumina MiSeq. The dynamic variation of archaeal community in AnMBRs was not as obvious as that of bacterial community based on the PCR-DGGE results. Under the circumstance of stable operation, Cloacimonetes, Chloroflexi, Bacteroidetes, Proteobacteria, Firmicutes, and Ignavibacteriae were observed as the predominant phyla in digested sludge based on the Illumina results. In addition to that, the cake layer possessed similar predominant phyla with the digested sludge but owned a higher diversity. Furthermore, overlapping bacterial communities were discovered between the excess sludge and digested sludge. However, the abundance of aerobic bacteria was substantially reduced, while the abundance of anaerobic microorganisms like phylum Cloacimonetes and Smithella was enriched in digested sludge over time. Additional PAC dosing, on the one hand, affected the bioavailable substrate, thus further changing the microbial community structure; on the other hand, aluminum itself also affected specific microbial communities. Besides, PAC dosing indirectly influenced the bacterial diversity in AnMBR as well.

  相似文献   

6.
To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.  相似文献   

7.
We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples.  相似文献   

8.
分子检测技术对活性污泥中氨氧化细菌的比较研究   总被引:12,自引:2,他引:10  
采用PCR扩增、随机克隆测序等技术,分析处理含高浓度氨氮的废水处理系统不同驯化时期的4个活性污泥样品,对样品中氨氧化细菌(AOB)的种类和氨单加氧酶(AMO)的活性进行分析比较,并在国内首次采用PCR变性梯度凝胶电泳(DGGE)相结合的技术对样品中总的细菌类群的差异进行研究。结果表明所检测到的氨氧化细菌优势菌群均属于变形细菌的β亚类,与Nitrosomonas sp.具有较高的相似性。活性污泥驯化成熟后,废水处理系统中AMO的活性有明显提高,活性污泥中的细菌类群更加集中,优势菌群相对稳定,系统对废水的处理效率也相应提高。结果表明采用分子检测技术有利于更全面地了解AOB的类群和功能,进而改善废水处理系统的处理效果。  相似文献   

9.
为探究造纸废水活性污泥中微生物群落结构多样性以及对造纸废水处理效果的影响,利用Illumina MiSeq 高通量测序方法,分析在处理造纸废水过程中,同一运行阶段两个并联氧化沟内活性污泥的微生物群落与多样性组成。结果表明,系统中处理造纸废水的活性污泥在同一废水条件下微生物群落结构总体稳定,优势细菌为绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)、Myxococcota、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等。最重要的优势细菌类群为Chloroflexi,相对丰度占比为47.67%~48.22%,远远高于其他废水中Chloroflexi的占比,其中厌氧绳菌纲(Anaerolineae)是其主要成员,占比84.39%~88.34%,可针对性地去除造纸废水中的污染物。造纸废水活性污泥样品中存在大量特殊功能菌群,其在废水中污染物尤其是木质素的去除中发挥着重要作用。  相似文献   

10.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

11.
Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.  相似文献   

12.
Aims: The aim of the study was to investigate the feasibility of a continuous reactor for psychrophilic anaerobic wastewater treatment by using the sludge from cold natural environment. Methods and Results: Six sludge samples (S1–S6) were collected from different cold natural locations to select sludge with high anaerobic microbial activity under low temperatures. After a 225‐day incubation, the maximum specific methane production rate of a waterfowl lake sediment (S1) at 15°C (70·5 mLCH4 gVSS?1 day?1) was much higher than all other samples. S1 was thus chosen as the seed sludge for the reactor treating synthetic brewery wastewater at 15°C, by immobilizing the micro‐organisms on polyurethane foam carriers. The chemical oxygen demand (COD) removal efficiency reached over 80% after 240‐day operation at an organic loading rate of 5·3 kg m?3 day?1, and significant enrichment of biomass was observed. Clone libraries of the microbial communities in the inoculum had high diversities for both archaea and bacteria. Along with a decrease in microbial community diversities, the dominant bacteria (79·5%) at the end of the operation represented the phylum Firmicutes, while the dominant archaeon (41·5%) showed a similarity of 98% with the psychrotolerant methanogen Methanosarcina lacustris. Conclusions: The possibility of using anaerobic micro‐organisms from cold environments in anaerobic wastewater treatment under psychrophilic conditions is supported by these findings. Significance and Impact of the Study: This study enriches the theory on microbial community and the application on anaerobic treatment of sludge from cold natural environments.  相似文献   

13.
The integrated fixed-film activated sludge (IFAS) system is a variation of the activated sludge wastewater treatment process, in which hybrid suspended and attached biomass is used to treat wastewater. Although the function and performance of the IFAS system are well studied, little is known about its microbial community structure. In this study, the composition and diversity of the bacterial community of suspended and attached biomass samples were investigated in a full-scale IFAS system using a highthroughput pyrosequencing technology. Distinct bacterial community compositions were examined for each sample and appeared to be important for its features different from conventional activated sludge processes. The abundant bacterial groups were Betaproteobacteria (59.3%), Gammaproteobacteria (8.1%), Bacteroidetes (5.2%), Alphaproteobacteria (3.9%), and Actinobacteria (3.2%) in the suspended sample, whereas Actinobacteria (14.6%), Firmicutes (13.6%), Bacteroidetes (11.6%), Betaproteobacteria (9.9%), Gammaproteobacteria (9.25%), and Alphaproteobacteria (7.4%) were major bacterial groups in the attached sample. Regarding the diversity, totals of 3,034 and 1,451 operational taxonomic units were identified at the 3% cutoff for the suspended and attached samples, respectively. Rank abundance and community analyses demonstrated that most of the diversity was originated from rare species in the samples. Taken together, the information obtained in this study will be a base for further studies relating to the microbial community structure and function of the IFAS system.  相似文献   

14.
In this study, two laboratory-scale anaerobic batch reactors started up with different inoculum sludges and fed with the same synthetic wastewater were monitored in terms of performance and microbial community shift by denaturant gradient gel electrophoresis fingerprinting and subsequent cloning, sequencing analysis in order to reveal importance of initial quality of inoculum sludge for operation of anaerobic reactors. For this purpose, two different seed sludge were evaluated. In Reactor1 seeded with a sludge having less diverse microbial community (19 operational taxonomic unit (OTU’s) for Bacterial and 8 OTU’s for Archaeal community, respectively) and a methanogenic activity of 150 ml CH4 g TVS−1 day−1, a chemical oxygen demand (COD) removal efficiency of 78.8 ± 4.17% was obtained at a substrate to microorganism (S/X) ratio of 0.38. On the other hand, Reactor2, seeded with a sludge having a much more diverse microbial community (24 OTU’s for Bacterial and 9 OTU’s for Archaeal communities, respectively) and a methanogenic activity, 450 ml CH4 g TVS−1 day−1, operated in the same conditions showed a better start-up performance; a COD removal efficiency of over 98% at a S/X ratio of 0.53. Sequence analysis of Seed2 revealed the presence of diverse fermentative and syntrophic bacteria, whereas excised bands of Seed1 related to fermentative and sulfate/metal-reducing bacteria. This study revealed that a higher degree of bacterial diversity, especially the presence of syntrophic bacteria besides the abundance of key species such as methanogenic Archaea may play an important role in the performance of anaerobic reactors during the start-up period.  相似文献   

15.
Liu Y  Zhang Y  Quan X  Zhang J  Zhao H  Chen S 《Bioresource technology》2011,102(3):2578-2584
A zero valent iron (ZVI) bed with a pair of electrodes was packed in an anaerobic reactor aiming at enhancing treatment of azo dye wastewater. The experiments were carried out in three reactors operated in parallel: an electric field enhanced ZVI-anaerobic reactor (R1), a ZVI-anaerobic reactor (R2) and a common anaerobic reactor (R3). R1 presented the highest performance in removal of COD and color. Raising voltage in R1 further improved its performance. Scanning electron microscopy images displayed that the structure of granular sludge from R1 was intact after being fed with the high dye concentration, while that of R3 was broken. Fluorescence in situ hybridization analysis indicated that the abundance of methanogens in R1 was significantly greater than that in the other two reactors. Denaturing gradient gel electrophoresis showed that the coupling of electric field and ZVI increased the diversity of microbial community and especially enhanced bacterial strains responsible for decolorization.  相似文献   

16.
The effect of a continuous supply of a water extract of Moringa oleifera seeds (WEMOS) on the hydrolytic microbial population of biomass grown in mesophilic upflow anaerobic sludge blanket reactors treating domestic wastewater was investigated. The WEMOS-treated sludge had seemingly a wider diversity, with enterobacter and klebsiella as dominant hydrolytic bacteria, compared with the control sludge. Additional tests indicated that various hydrolytic bacteria could degrade WEMOS. It appeared that a continuous supply of WEMOS to an anaerobic digester, treating domestic wastewater, increased the diversity of hydrolytic bacteria and therefore enhanced the biological start-up of the reactor.  相似文献   

17.
The reproducibility and stability of low‐ temperature anaerobic wastewater treatment systems undergoing transient perturbations was investigated. Three identical anaerobic expanded granular sludge bed‐based bioreactors were used to degrade a volatile fatty acid and glucose‐based wastewater under sub‐ambient (15°C) conditions. The effect of a variety of environmental perturbations on bioreactor performance was assessed by chemical oxygen demand removal. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes extracted from sludge granules. Methanogenic activity was monitored using specific methanogenic activity assays. Bioreactor performance and microbial population dynamics were each well replicated between both experimental bioreactors and the control bioreactor prior to, and after the implementation of most of the applied perturbations. Gene fingerprinting data indicated that Methanosaeta sp. were the persistent, keystone members of the archaeal community, and likely were pivotal for the physical stability and maintenance of the granular biofilms. Cluster analyses of DGGE data suggested that temporal shifts in microbial community structure were predominantly independent of the applied perturbations. Biotechnol. Bioeng. 2010;105: 79–87. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   

19.
Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.  相似文献   

20.
【背景】生物阴极微生物燃料电池因其构造成本低和阴极可持续性发展的优点而成为一种很有前途的废水处理系统,但阴极微生物的氧化还原性能限制了其在实际应用中的推广。【目的】为了提高生物阴极的性能,需要深入了解影响阴极氧化还原性能的微生物群落。【方法】利用16S rRNA基因高通量测序技术分析对比原始接种污泥样品和驯化后阴极电极上生物膜样品多样性及结构变化。【结果】测序结果表明,原始接种污泥样品与驯化后阴极电极生物膜样品中微生物群落种类和结构存在显著差异,驯化后阴极电极生物膜样品中变形菌门(Proteobacteria)、γ-变形菌纲(Gammaproteobacteria)和特吕珀菌属(Trueperaceae)相对丰度比例高于原始污泥样品,成为优势菌群。【结论】驯化对系统阴极电极生物膜群落影响显著,随着产电量的输出,优势菌群不断富集,最终形成一个适应该实验环境下的新的微生物群落。对优势菌群结构和变化进行探讨,为生物阴极的研究补充更多生物学方面的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号