首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wang QE  Zhu Q  Wani MA  Wani G  Chen J  Wani AA 《DNA Repair》2003,2(5):483-499
Functional tumor suppressor p53 is mainly required for efficient global genomic repair (GGR), a subpathway of nucleotide excisions repair (NER). In this study, the regulatory effect of p53, on the spaciotemporal recruitment of XPC and TFIIH to DNA damage sites, was investigated in repair-proficient and -deficient human cells in situ. Photoproducts were induced through micropore UV irradiation of discrete subnuclear areas of intact cells and the specific lesions, as well as recruited repair factors, were detected by immunofluorescent intensity and density of the damaged DNA subnuclear spots (SNS). Both cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) were visualized in situ at SNS within irradiated nuclear foci. The in situ repair kinetics revealed that p53-WT normal fibroblasts are proficient for the repair of both CPD and 6-4PP, whereas, p53-Null Li-Fraumeni syndrome (LFS) fibroblasts fail to efficiently repair CPD but not 6-4PP. Colocalization experiments of the NER factors showed that in normal human cells, XPC and TFIIH are rapidly and efficiently recruited to DNA damage within SNS. By contrast, recruitment of both XPC and TFIIH to DNA damage in SNS occurred much less efficiently in p53-Null or p53-compromised cells. The total cellular levels of XPC and XPB were similar in both p53-WT and -Null cells and remained unchanged up to 24h following UV irradiation. The results also showed that dispersal of recruited XPC and TFIIH from DNA damage SNS occurs within a short period after DNA damage. Such dispersal requires functional XPA, XPF and XPG proteins. Taken together, the results demonstrated that p53 plays a pronounced role in the damage recognition and subsequent assembly of repair machinery during GGR and the recruitment of XPC and TFIIH to CPD is p53-dependent. Most likely mechanism of this p53 action is through its downstream effector protein, DDB2.  相似文献   

3.
4.
Wild-type p53 protein is known to regulate the global genomic repair (GGR), removing bulky chemical DNA adducts as well as cyclobutane pyrimidine dimers from the genome overall and from non-transcribed strands (NTS) in DNA. To investigate the role of cellular factor(s) relevant to p53 regulated DNA repair processes, we examined the repair kinetics of chemical carcinogen, anti-benzo[a]pyrene-diol epoxide (anti-BPDE), induced bulky DNA adducts in normal human mammary epithelial cells (HMECs) and HMEC transformed by human papillomavirus (HPV)-16E6 or -16E7 oncoproteins, which, respectively targets p53 or pRb proteins for degradation. The results show that the removal of anti-BPDE DNA adducts from the genome overall and NTS by GGR was significantly reduced in HPV-16E6 protein expressing cells as compared to that in normal and HPV-16E7 protein expressing cells, indicating the role of p53 and not pRb in nucleotide excision repair (NER). We further determined the potential effects of the p53-regulated p21(waf1/cip1) gene product in NER in human colon carcinoma, HCT116 cells expressing wild-type p53 but different p21(waf1/cip1) genotypes (p21+/+, p21+/-, p21-/-). The results donot show a discernible difference in the removal of anti-BPDE DNA adducts from the genome overall and the transcribed strand (TS) and NTS irrespective of the presence or absence of p21(waf1/cip1) expression. Based on these results, we suggest that: (i) the wild-type p53 function but not p21(waf1/cip1) expression is necessary for GGR of chemical induced bulky DNA adducts; (ii) the Rb gene product does not play a significant role in NER; and (iii) the modulation of NER by p53 may be independent of its function in the regulation of cell cycle arrest upon chemically induced DNA damage.  相似文献   

5.
6.
Adimoolam S  Ford JM 《DNA Repair》2003,2(9):947-954
  相似文献   

7.
8.
9.
10.
Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.  相似文献   

11.
12.
13.
14.
15.
16.
Nucleotide excision repair (NER), the most versatile and ubiquitous mechanism for DNA repair, operates to remove many types of DNA base lesions. We have studied the role of p53 function in modulating the repair of DNA damage following UV irradiation in normal and p53-compromised human mammary epithelial cells (HMEC). The effect of UV-induced DNA damage on cellular cytotoxicity and apoptosis was determined in conjunction with global, gene- and strand-specific repair. Cytotoxicity studies, using clonogenic survival and MTT assays, showed that HPV-16 E6-expressing HMEC were more UV sensitive than p53-WT cell lines. High apoptotic index obtained with p53-compromised cells was in conformity to both the low clonogenic survival and the low cellular viability. No discernible differences in the formation of initial UV-induced cyclobutane pyrimidine dimers (CPD) were observed in the cell lines of varying p53 functional status. However, the extent and the rate of damage removal from genome overall were highest for p53-WT cells. Further examination of strand-specific repair in the p53 gene revealed that the removal of CPD in the non-transcribed strand (NTS) was slower in p53-compromised cells compared to the normal p53-WT cell lines. These results suggest that loss of p53 function, in the absence of other genetic alterations, decreased both overall amount of CPD repaired and their removal rate from the genome. Additionally, normal function of p53 is required for the repair of the NTS, but not of the transcribed strand (TS) in genomic DNA in human epithelial cells. Thus, failure of quantitative removal of CPD by global genomic repair (GGR), due to loss of p53 function, causes the enhanced UV sensitivity and increased damage-induced apoptosis via a p53-independent pathway. Nevertheless, recovery of cells from UV damage requires normal p53 function and efficient GGR.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号