首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim in this study was to compare two estrus synchronization protocols in buffaloes. Animals were divided into two groups: Group A (n=111) received 100 microg GnRH on Day 0, 375 microg PGF(2alpha) on Day 7 and 100 microg GnRH on Day 9 (Ovsynch); Group B (n=117) received an intravaginal drug release device (PRID) containing 1.55 g progesterone and a capsule with 10mg estradiol benzoate for 10 days and were treated with a luteolytic dose of PGF(2alpha) and 1000 IU PMSG at the time of PRID withdrawal. Animals were inseminated twice 18 and 42 h after the second injection of GnRH (Group A) and 60 and 84 h after PGF(2alpha) and PMSG injections (Group B). Progesterone (P(4)) concentrations in milk samples collected 12 and 2 days before treatments were used to determine cyclic and non-cyclic buffaloes, and milk P(4) concentrations 10 days after Artificial insemination (AI) were used as an index of a functional corpus luteum. Cows were palpated per rectum at 40 and 90 days after AI to determine pregnancies. All previously non-cyclic animals in Group B had elevated P(4) (>120 pg/ml milk whey) on Day 10 after AI. Accordingly, a greater (P<0.01) relative percentage of animals with elevated P(4) 10 days after AI were observed in Group B (93.2%) than in Group A (81.1%). However, there was no difference in overall pregnancy rates between the two estrus synchronization protocols (Group A, 36.0%; Group B 28.2%). When only animals with elevated P(4) on Day 10 after AI were considered, pregnancy rate was higher (P<0.05) for animals in Group A (44.4%) than Group B (30.3%). The findings indicated that treatment with PRID can induce ovulation in non-cyclic buffalo cows. However, synchronization of estrus with Ovsynch resulted in a higher pregnancy rate compared with synchronization with PRID, particularly in cyclic buffalo.  相似文献   

2.
A single injection of a microsphere preparation, designed to deliver 1.25 gm progesterone and 100 mg estradiol-17beta at a controlled rate, for a duration of 12 to 14 days, produces accurate control of estrus and fertile ovulations in mares. Theatment is followed by PGF(2)alpha injection 14 days after steroid injection. The objectives of the present study were to determine whether estradiol added to the progesterone treatment or PGF(2)alpha administered at the end of the steroid treatment regimen, would improve synchronization of estrus and ovulation. A total of 45 cyclic horse mares was randomly assigned to 1 of 5 treatment groups as follows: Group 1 (control, n=9) sterile microsphere vehicle + sterile PGF(2)alpha vehicle 14 days after treatment with microsphere vehicle; Group 2 (n=9) progesterone and estradiol microspheres + PGF(2)alpha 14 days after treatment with microspheres; Group 3 (n=9) progesterone and estradiol microspheres + PGF(2)alpha vehicle 14 days after treatment with microspheres; Group 4 (n=9) progesterone + PGF(2)alpha 14 days after treatment with microspheres; and Group 5 (n=9) progesterone + PGF(2)alpha vehicle 14 days after treatment with microspheres. Addition of estradiol (P<0.05) or PGF(2)alpha (P<0.05) to the treatment regimen increased synchronization efficary by reducing variation in days to ovulation. All treatments significantly reduced variation in days to estrus compared with that of the controls; however, mares in the progesterone groups had an increased incidence of silent or shortened estrous behavior (<- 2 days) following treatment. Estradiol added to the treatment regimen increased (P<0.05) the number of mares with post treatment estrus > 2 days in duration compared with mares treated with progesterone (78 vs 33%, respectively). Therefore, estradiol and PGF(2)alpha each appear to reduce variation in days to ovulation while estradiol seems to promote better expression of posttreatment estrous behavior.  相似文献   

3.
The present experiment was conducted to study the growth profile of the ovulatory follicle in relation to the expression of estrus following administration of PGF(2alpha) to subestrus buffaloes. After detection of a mature corpus luteum by examination per rectum, confirmed by ultrasound scanning, subestrus buffaloes (n=20) were treated (Day 0) with single dose of Dinoprost tromethamin (25 mg, i.m.). Blood samples were collected at 0, 24 and 48 h after treatment for estimation of plasma progesterone concentration. Growth profile of the ovulatory follicle was monitored daily through ultrasound scanning starting from Day 0 until ovulation and the regression profile of CL was monitored at 0, 24 and 48 h of treatment. Estrus was detected by exposure to a fertile buffalo bull three times a day until expression of overt estrus or ovulation. Behavioral estrus was recorded in 14 animals and 6 animals ovulated silently. Sixteen animals including six animals with silent estrus ovulated from the dominant follicle present at treatment (Group A) and remaining four animals ovulated from the dominant follicle of succeeding follicular wave (Group B). The intervals from treatment to estrus (6.5+/-0.25 versus 3.2+/-0.27 days, P<0.001) and treatment to ovulation (7.5+/-0.25 versus 5.4+/-0.46 days, P<0.005) were significantly longer in animals of Group B compared with animals of Group A. Significant differences were observed in growth profile of the ovulatory follicle between animals of Groups A and B with respect to size of the follicle on Day 0 (9.8+/-0.7 versus 5.3+/-0.45 mm, P<0.001), daily growth rate (0.97+/-0.07 versus 1.6+/-0.2 mm/day, P<0.01) and increase in diameter (4.1+/-0.6 versus 7.8+/-0.7 mm, P<0.01). The animals with silent estrus (subgroup A-2) had significantly smaller diameter of the ovulatory follicle on Day 0 (7.7+/-0.4 versus 11.0+/-0.7 mm, P<0.005), its daily growth rate was significantly slower (0.7+/-0.02 versus 1.1+/-0.1 mm/day, P<0.01) and they recorded significantly longer interval from treatment to ovulation (7.3+/-0.56 versus 4.2+/-0.27 days, P<0.001) compared with the animals that showed overt estrus (subgroup A-1). The corpus luteum area (CL area) and plasma progesterone (P(4)) concentration declined continuously from 0 to 48 h after PGF(2alpha) treatment in the animals of both the Groups A and B. Non-significant differences were observed in mean CL area and plasma P(4) concentration at 0, 24 and 48 h post-treatment between animals of Groups A and B and also between animals of subgroups A-1 and A-2. The small size and the slow growth rate of the ovulatory follicle were identified as the possible cause of silent estrus in subestrus buffaloes after PGF(2alpha) treatment.  相似文献   

4.
Ovarian follicular dynamics was monitored by transrectal ultrasonography, for a period of 60 to 90 days, and its correlation with plasma estradiol-17β (E2) and progesterone (P4) were studied in seventeen, multiparous, non-lactating, 12 to 20-year-old dromedary camels. The average number of follicles recruited (12.77 ± 0.93) in each wave between animals varied (P < 0.001). The number of follicles recruited during different follicular waves was highly repeatable (0.95) within individual animals. The growth and mature phase periods of the dominant follicle (DF) were 6.10 ± 0.15 and 10.20 ± 0.47 days, respectively with a linear growth rate of 1.17 ± 0.02 mm/day between Day 0 and 10 of the follicular wave. There was an inverse relationship between the diameter of the largest DF and number of follicles (r = −0.95, P < 0.001). The DF development did not regularly alternate between the ovaries and the incidence of codominance was 45%. The mean maximum diameter of DF during its mature phase was 27.30 ± 0.78 mm and oversized follicle was 38.43 ± 1.41 mm. In 73.3% waves, the DF continued its growth for a period of 10.64 ± 1.53 days even after losing its dominance and developed into oversized follicle. The duration of the regression phase of DF and oversized follicle were 24.71 ± 3.79 and 18.50 ± 2.23 days. The mean duration of a complete follicular wave was 47.11 ± 2.94 days with an interwave interval (IWI) of 16.36 ± 0.37 days. The IWI within an individual was repeatable (0.88) and between the animals was variable (P < 0.001). Plasma E2 concentration profiles showed a wave like pattern. The peak plasma E2 concentrations were attained approximately 12 days after beginning of the growth phase, when the largest DF grew to a diameter of 18.7 mm. Plasma concentration of P4 was below 1.0 ng/mL in 85% of waves and above 1.0 ng/mL in 15% of the waves for a period of 3 to 6 days in the absence of spontaneous ovulation. It is concluded that ovarian follicular development and plasma E2 concentrations occurs in a wave like pattern in dromedary camels and the IWI and follicle numbers recruited per wave are variable between the animals and repeatable within an individual animal.  相似文献   

5.
This study, compared the endocrine function of dominant follicles of the first and second follicular waves (DF1 and DF2, respectively) and the corpora lutea that were subsequently formed. In the experiments conducted in vitro, ovaries were collected from dairy cows on day 6.1 +/- 0.2 or day 14.8 +/- 0.2 of the oestrous cycle to obtain steroidogenically active DF1 (n = 8) and DF2 (n = 7). Granulosa and thecal cells were isolated, dispersed and incubated for 16 h with testosterone (granulosa cells) or forskolin or bLH (thecal cells). Both types of cell were subsequently cultured for 9 days with forskolin and insulin. The viability of the granulosa cells was similar in DF1 and DF2, but the concentration of oestradiol in the follicular fluid was higher in DF1 than in DF2. Production of oestradiol and progesterone by granulosa cells was similar in DF1 and DF2, but androstenedione and progesterone production by thecal cells were 3.5-6.5-fold higher in DF1 than in DF2. During the 9 days of luteinization, progesterone production was similar in DF1- and DF2-derived granulosa cells, but was two- to three-fold higher in DF1- than in DF2-derived thecal cells. Experiments were also conducted in vivo. In Expt 1 in vivo, lactating cows that were assigned to ovulate DF1 or DF2 (n = 9 and 13 in replicate 1 and 2, respectively) were injected with PGF2 alpha on days 6 and 7 or on days 14 and 15 of the oestrous cycle, respectively. A wave by replicate interaction was detected for plasma progesterone concentration in the subsequent cycle: in the first replicate, progesterone production was approximately 40% higher in cows that ovulated DF1; in the second replicate, progesterone production was similar in cows that ovulated DF1 or DF2. In Expt 2, pooled plasma progesterone in the mid-luteal phase (days 12-15) after insemination of pregnant and non-pregnant cows was approximately 30% higher in cows that had ovulated DF1 (n = 32) than in cows that had ovulated DF2 (n = 22). This study showed DF1 had a higher steroidogenic capacity compared with DF2, which may be related to the hormonal environment in which the follicles developed.  相似文献   

6.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

7.
The objectives of the present study were to evaluate the induction of estrus and fertility in yak cows treated with Co-Synch regimens or progesterone (P(4)). In Experiment 1, postpartum suckled yaks were assigned to three treatments: (1) A (n=28), insertion of an intravaginal device containing P(4) (CIDR) on Day 0, PGF(2alpha) (i.m.) on Day 6 and PMSG (i.m.) at the time of CIDR removal on Day 7 (P(4)-PGF(2alpha)-PMSG); (2) B (n=21), PGF(2alpha) (i.m.) on Day 6 and PMSG on Day 7; (3) C (n=26), control group. Seven yak bulls were grazed with the cows for natural breeding. Rate of estrus within 96h of the end of treatment was greater (P<0.05) in A (100.0%) than in B (28.6%) or C (0.0%). First service conception rate (CR) determined by serum P(4) on Day 21 after breeding was greater (P<0.05) in A (78.6%) than in B (22.2%). Also, pregnancy rate (PR) during the breeding season was greater (P<0.05) in A (82.1%) than in B (19.0%) and C (7.7%). In Experiment 2, non-suckled yaks that calved in previous years but not in the current year were assigned to three treatments: (1) A (n=31), GnRH (i.m.) on Day 0, followed by PGF(2alpha) on Day 7 and timed artificial insemination (TAI) concurrently with GnRH treatment on Day 9 (Co-Synch regimen); (2) B (n=50), a CIDR device for 7 days plus PGF(2alpha) and PMSG at the time of CIDR withdrawal on Day 7 and TAI on Day 9 (P(4)-PGF(2alpha)-PMSG); (3) C (n=50), yak cows were artificially inseminated at spontaneous estrus. Frozen semen of Holstein and Jersey were used for insemination in Experiment 2. The CR assessed by rectal palpation 35 days after TAI was not different in A (22.6%), B (30.0%) and C (33.3%), but PR was greater in A and B than in C, when based on those cows presented for estrous synchronization programs. It is concluded that P(4)-PGF(2alpha)-PMSG protocol could efficiently induce estrus and result in an acceptable pregnancy rate in postpartum suckled yak cows. This technique and Co-Synch regimen can be applied successfully for TAI of non-suckled yak cows.  相似文献   

8.
A new protocol for superovulating cattle which allows for control of the timing of ovulation after superstimulation with FSH was developed. The preovulatory LH surge was blocked with the GnRH agonist deslorelin, and ovulation was induced by injection of LH. In Experiment 1, heifers (3-yr-old) were assigned to a control group (Group 1A, n = 4) or a group with deslorelin implants (Group 1B, n = 5). On Day -7, heifers in Group 1A received a progestagen CIDR-B((R))device, while heifers in Group 1B received a CIDR-B((R))device + deslorelin implants. Both groups were superstimulated with twice daily injections of FSH (Folltropin((R))-V): Day 0, 40 mg (80 mg total dose on Day 0); Day 1, 30 mg; Day 2, 20 mg; Day 3, 10 mg. On Day 2, heifers were given PGF (a.m.) and CIDR-B((R)) devices were removed (p.m.). Three heifers in Group 1A had a LH surge and ovulated, whereas neither of these events occurred in Group 1B (with deslorelin implants) heifers. In Experiment 2, heifers (3-yr-old) were assigned to 1 of 4 equal groups (n = 6). On Day -7, heifers in Group 2A received a norgestomet implant, while heifers in Groups 2B, 2C and 2D received norgestomet + deslorelin implants. Heifers were superstimulated with FSH starting on Day 0 as in Experiment 1. On Day 2, heifers were given PGF (a.m.) and norgestomet implants were removed (p.m.). Heifers in Groups 2B to 2D were given 25 mg LH (Lutropin((R))): Group 2B, Day 4 (a.m.); Group 2C, Day 4 (p.m.); Group 2D, Day 5 (a.m.). Heifers in Group 2A were inseminated at estrus and 12 and 24 h later, while heifers in Groups 2B to 2D were inseminated at the time of respective LH injection and 12 and 24 h later. Injection of LH induced ovulation in heifers in Groups 2B to 2D. Heifers in Group 2C had similar total ova and embryos (15.2 +/- 1.4) as heifers in Group 2A (11.0 +/- 2.8) but greater (P < 0.05) numbers than heifers in Group 2B (7.0 +/- 2.3) and Group 2D (6.3 +/- 2.0). The number of transferable embryos was similar for heifers in Group 2A (5.8 +/- 1.8) and Group 2C (7.3 +/- 2.1) but lower (P < 0.05) for heifers in Group 2B (1.2 +/- 0.8) and Group 2D (1.3 +/- 1.0). The new GnRH agonist-LH protocol does not require observation of estrus, and induces ovulation in superstimulated heifers that would not have an endogenous LH surge.  相似文献   

9.
Davies MC  Beck NF 《Theriogenology》1992,38(3):513-526
Clun Forest ewe lambs (n = 124) were used to investigate the effects of post-mating progestagen supplementation on fertility. The animals were assigned to 1 of 3 three treatments: Group A (n = 41) served as the controls, Group B (n = 42) received 3 weekly injections of 6 mg of medroxyprogesterone acetate (MAP), while Group C (n = 41) was treated with intravaginal sponge containing 60 mg of MAP; all treatments were administered from Day 5 to Day 26 post mating. Supplementation did not increase the percentage of animals pregnant or those lambing: Group A, 72.2 and 66.6%; Group B, 57.5 and 50.0%; and Group C, 67.5 and 60.0%, respectively. Furthermore, there was no effect of supplementation on plasma progesterone, prolactin, cortisol, growth hormone, insulin, or glucose concentrations (P>0.05). However, pre- and post- mating hormone profiles differed significantly between the animals that lambed or aborted and the animals which were found to be barren at lambing. In the barren animals, progesterone concentrations were lower 4 days before and 9 to 33 days after mating (P<0.01), while overall prolactin concentrations were higher throughout the trial (P<0.01). But there was no difference between barren and fertile lambs in cortisol, growth hormone, insulin or glucose concentrations (P>0.05). These results indicate that progestagen supplementation does not increase the reproductive performance of ewe lambs. However, infertility is associated with reduced luteal function and increased prolactin concentration before and after mating.  相似文献   

10.
Peripheral plasma levels of the main blood plasma metabolite of PGF(2alpha) (15-keto-13,14-dihydro-PGF(2alpha)) and progesterone were investigated during the immediate, post-partum period in 59 normally calving cows. Uterine involution was monitored by weekly rectal palpations. The levels of the prostaglandin metabolite were high at parturition and remained thereafter elevated for periods varying up to 7-23 days. Uterine involution was completed during periods ranging from 16-53 days. According to the clinical findings, the animals were divided into three groups. Group A comprises 46 animals which had an uncomplicated, puerperal period. A significant (p<0.001) correlation between the duration of elevated prostaglandin levels and the time for completed uterine involution (Y=29.6 - 1.3 (X - 13.5)) was found for these animals. Group B animals (n=8) had periods of varying length with uterine discharge during the first 30 days post-partum. When compared to group A animals, the animals in group B had comparatively longer periods of prostaglandin release and also longer periods for completion of uterine involution. Group C animals (n=5) at times had palpable, thin-walled, cystlike structures in the ovaries during the first 30 days post-partum. In this group of animals, the periods of high prostaglandin levels, as well as for the completion of uterine involution, were similar to those for the animals in group A. Progesterone levels remained low during the immediate post-partum period and in no case were elevated levels found until the prostaglandin release had ceased.  相似文献   

11.
The relationship between follicle growth and plasma inhibin A, FSH, LH, estradiol (E), and progesterone was investigated during the normal bovine estrous cycle and after treatment with steroid-free bovine follicular fluid (bFF) to arrest follicle development. In the first study, four heifers were monitored over three prostaglandin (PG)-synchronized cycles. Blood was collected every 2-8 h, and ovaries were examined daily by ultrasonography. Inhibin A was measured using a modified enzyme-linked immunosorbent assay that employed a new monoclonal antibody against the alpha subunit of bovine inhibin. Plasma inhibin A ( approximately 50 pg/ml before luteolysis) rose steadily during the induced follicular phase (P < 0.05) to a peak ( approximately 125 pg/ml) coincident with the preovulatory E/LH/FSH surge. After ovulation, inhibin A fell sharply (P < 0.05) to a nadir ( approximately 55 pg/ml) coincident with the secondary FSH rise. During the next 3 days, inhibin A increased to approximately 90 pg/ml in association with growth of the new dominant follicle (DF). Plasma E also rose twofold during this period, whereas FSH fell by approximately 50%. Inhibin A was negatively correlated with FSH (r = -0.37, P < 0.001) and positively correlated with E (r = 0.49, P < 0.0001). Observations on eight cycles (two cycles/heifer), in which growth of the ovulatory DF was monitored from emergence to ovulation, showed that the first-wave DF (DF1) ovulated in three cycles and the second-wave DF (DF2) in five cycles. After PG, plasma inhibin A and E increased similarly in both groups, with concomitant falls in FSH. In the former group, the restricted ability of DF1 to secrete both inhibin A and E was restored after luteolysis. Results indicate that dynamic changes in the secretion of both E and inhibin A from the DF contribute to the fall in FSH during the follicular phase and to the generation and termination of the secondary FSH surge, both of which play a key role in follicle selection. In the second study, bFF (two dose levels) was administered to heifers (n = 3-4) for 60 h starting from the time of DF1 emergence. Both doses suppressed FSH (P < 0.05) and blocked DF1 growth to the same extent (P < 0.01), although inhibin A levels were only marginally raised by the lower dose (not significant compared to controls). The high bFF dose raised (P < 0.001) inhibin A to supraphysiological levels ( approximately 1 ng/ml). A large "rebound" rise in FSH occurred within 1 day of stopping both treatments, even though the inhibin A level in the high-dose bFF group was still approximately threefold higher than that in controls. This indicates that desensitization of gonadotropes to inhibin negative feedback is a contributory factor, together with reduced ovarian output of E, in generation of the post-bFF rebound in FSH.  相似文献   

12.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

13.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

14.
Embryos at 4 cell stage obtained from Sarda ewes superovulated with FSHp (Sigma) were micromanipulated in order to obtain single blastomeres (1/4 E). The 1/4 E have been located randomly in two groups. In the first (Group A n. 30) the 1/4 E have been put back in empty zonae pellucidae; in the second (Group B n. 21) they have been microencapsulated in sodium alginate (1.1%) by dropping cell-alginate solution in a 1.5% CaCl2. Each capsule (1 mm diameter) contained four 1/4 E. The blastomeres have been co-cultured for 5 days in CZB medium on oviductal cell monolayer in a humidified incubator (5% CO2, 95% air, 38.5 degrees C). No differences were found between the groups reaching blastocyst stage after the end of the culture period (A 50%-B 47%).  相似文献   

15.
The aim of the current study was to evaluate the ovarian follicular response to GnRH at two dose levels in prepubertal Murrah buffalo heifers during hot-humid months. Heifers received 10μg (Group A, n=7) or 20μg (Group B, n=6) of GnRH during the growing phase of the dominant follicle (DF>6mm), as identified by pretreatment regular ultrasound scanning. A similar dose was repeated approximately 30 days later, again coinciding with another growing DF. Post-treatment ovarian activity was studied by alternate day transrectal ultrasonography until 25 days post-second GnRH. In both groups, three types of response were recorded: formation of a corpus luteum (CL), luteinization of the follicle wall, i.e. luteinized follicle (LF) or no response (NR). Pooled data at GnRH injections revealed that the DF diameter in relation to the type of response in Group A heifers was, NR: 6.83±0.17 (n=3), LF: 8.10±0.67 (n=6) and CL: 8.88±0.96mm (n=5), while respective values in Group B heifers were 8.68±0.44mm (n=4), 9.37±0.46 (n=6) and 8.95±0.55mm (n=2). The pattern of response was more evident in Group A but unpredictable in Group B. Corpora lutea developed in response to both the GnRH injections were short-lived. Mean maximum diameter of LFs in Groups A and B were 16.07±0.99 and 16.58±1.20mm respectively and wave duration of these follicles in both groups was 23.33±1.67 and 25.33±1.12 days, respectively. None of the heifers commenced cyclicity following regression of the CL or LF.  相似文献   

16.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Two experiments were conducted to test the hypothesis that there are dynamic changes in follicular blood flow during follicular deviation and that nitric oxide (NO) in follicular fluid (FF) plays a role in regulation of follicular blood flow. In Experiment I, follicular blood flow of the two largest follicles was monitored by using Power Doppler ultrasonography during follicular deviation in sixteen follicular waves during eight estrous cycles in eight cows. Blood flow did not differ (P>0.05) between the dominant follicle (DF) and the largest subordinate follicle (SF) until the beginning of the deviation of the follicular size, but was higher (P<0.05) in DF than in the largest SF one and two days after the beginning of diameter deviation in ovulatory (n=5) and atretic (n=11) waves; respectively. In Experiment II, FF was aspirated from DF and the largest SF on the day of diameter deviation (DF, n=6; SF, n=6) and two days later (DF, n=12; SF, n=9). Nitric oxide did not differ (P>0.05) between DF and the largest SF on the day of diameter deviation but, one or two days after observed diameter deviation NO concentrations were lower (P<0.01) in DF compared to the largest SF. On the day of diameter deviation and two days later E2 levels in FF were higher (P<0.01) in DF than in the largest SF. P4 concentrations in FF were higher (P<0.05) in DF than in the largest SF on the day of diameter deviation, but did not (P>0.05) differ two days later. E2/P4 ratio in FF was the same (P>0.05) in DF and the largest SF on the day of diameter deviation, but was higher (P<0.01) in DF than in the largest SF one or two days later. In conclusion, area of follicular blood flow of DF and the largest SF increased in parallel with follicular size during follicular deviation. Furthermore, there were relationships between changes in follicular blood flow, NO concentrations and E2/P4 ratio in FF following the beginning of diameter deviation in cattle.  相似文献   

18.
Pregnant pony mares in Group A (n = 4) received i.m. injections at 07:00 and 17:00 h of 0.8 mg bromocriptine/kg body weight 0.75 per day beginning on Day 295 of gestation and continuing until parturition. Group B (n = 4) was treated similarly, but perphenazine was administered orally at 0.375 mg/kg body weight twice a day beginning on Day 305 of gestation and continuing until parturition. Mares in Group C (n = 3) received i.m. injections of saline. Mean plasma prolactin and progesterone concentrations were greater (P less than 0.05) for mares in Group C than in Groups A and B from 295 to 309 days of gestation. From 305 days of gestation, plasma prolactin and progesterone concentrations were greater (P less than 0.05) in Group B and C than in Group A mares. Progesterone and prolactin concentrations increased over this period for Group B and Group C mares, but remained constant in Group A mares. From 10 days pre partum through foaling, mares in Group A had lower progesterone (P less than 0.05) and prolactin (P less than 0.01) concentrations than Group B and C mares. All mares in Group A were agalactic at foaling, while all mares in Groups B and C had normal milk secretion. Gestation was longer (P less than 0.05) in Group A than in Group C mares. In Group A, 2 mares retained the placenta for greater than 3 h, 3 mares had dystocia and all 4 mares had thickened, haemorrhagic placentae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

20.
Japanese Black primiparous and multiparous beef cows (n = 120) were selected as recipients and randomly divided into three groups (A, B, and C) of 40 recipients each. Group A received an intramuscular (i.m.) treatment of 1500 IU human chorionic gonadotropin (hCG) on day 1 (day 0 = onset of estrus), while Group B received an i.m. treatment of hCG on day 6. Group C received an i.m. treatment of 5 ml saline on day 6 as a control. On day 7, frozen-thawed embryo transfer was conducted in all groups, and pregnancy was diagnosed by palpated per rectum 40-50 days after the transfer. Twelve recipients were randomly selected from each group. Plasma progesterone (P) and estradiol-17beta (E2) concentrations were determined in these recipients on days 6, 7 and 14, and at the time of pregnancy diagnosis, and their ovaries were examined for a corpus luteum and follicles by palpated per rectum. The pregnancy rate in Group B was higher (67.5%. P < 0.05) than the rate in Group C (45.0%) and in Group A (42.5%). The plasma P concentration on day 14 tended to be higher although not significantly in Group B than in Groups C and A. At the time of pregnancy diagnosis, the blood P concentration of pregnant recipients in Group B was higher (P < 0.05) than that of those in Groups C and A. The plasma E2 concentrations on days 7 and 14 were lower (P < 0.05) in Group B than in Groups C and A. These results showed that administration of hCG 6 days after estrus improved the pregnancy rate for non-surgical frozen embryo transfer 7 days after estrus by enhancing luteal function and depressing E2 secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号