共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated CO2 can affect plant fitness not only through its effects on seed production but also by altering the quality of seeds and therefore germination and seedling performance. We collected seeds from mother plants of Bromus erectus grown in field plots at ambient and elevated CO2 (m-CO2, maternal CO2) and germinated them in the greenhouse in a reciprocal design under ambient and elevated CO2 (o-CO2, offspring CO2). This design allowed us to examine both the direct effects of elevated CO2 on germination and seedling growth and the indirect (maternal) effects via altered seed quality. Elevated m-CO2 significantly increased seed mass and increased the C:N ratio of seeds from field-grown plants. Percentage and rate of germination were not affected by the m-CO2 or o-CO2 treatments. Similarly, elevated m-CO2 had no significant effect on seedling size as estimated by the total leaf length. When differences in seed mass were adjusted by using seed mass as a covariate in ANOVA, a negative effect of m-CO2 on seedling size appeared which increased with increasing seed mass (significant covariate×m-CO2 interaction). This may indicate that the advantage of increased seed mass at elevated m-CO2 was offset by the reduced concentration of nitrogen (and possibly other nutrients) in these seeds. In contrast to m-CO2, elevated o-CO2 greatly increased seedling size, and this stimulatory effect of elevated o-CO2 was found to increase with increasing seed mass (significant covariate×o-CO2 interaction). Taken together, these results suggest that in B. erectus transgenerational effects of elevated CO2 are relatively small. However, other factors (genetic and environmental) that contribute to variation in seed provisioning can critically influence the responsiveness of seedlings to elevated CO2. Received: 10 May 1999 / Accepted: 6 January 2000 相似文献
2.
Quantitative integration of the literature on the effect of elevated CO2 on woody plants is important to aid our understanding of forest health in coming decades and to better predict terrestrial feedbacks on the global carbon cycle. We used meta-analytic methods to summarize and interpret more than 500 reports of effects of elevated CO2 on woody plant biomass accumulation and partitioning, gas exchange, and leaf nitrogen and starch content. The CO2 effect size metric we used was the log-transformed ratio of elevated compared to ambient response means weighted by the inverse of the variance of the log ratio. Variation in effect size among studies was partitioned according to the presence of interacting stress factors, length of CO2 exposure, functional group status, pot size, and type of CO2 exposure facility. Both total biomass (W T) and net CO2 assimilation (A) increased significantly at about twice ambient CO2, regardless of growth conditions. Low soil nutrient availability reduced the CO2 stimulation of W T by half, from +31% under optimal conditions to +16%, while low light increased the response to +52%. We found no significant shifts in biomass allocation under high CO2. Interacting stress factors had no effect on the magnitude of responses of A to CO2, although plants grown in growth chambers had significantly lower responses (+19%) than those grown in greenhouses or in open-top chambers (+54%). We found no consistent evidence for photosynthetic acclimation to CO2 enrichment except in trees grown in pots <0.5 l (−36%) and no significant CO2 effect on stomatal conductance. Both leaf dark respiration and leaf nitrogen were significantly reduced under elevated CO2 (−18% and −16% respectively, data expressed on a leaf mass basis), while leaf starch content increased significantly except in low nutrient grown gymnosperms. Our results provide robust, statistically defensible estimates of elevated CO2 effect sizes against which new results may be compared or for use in forest and climate model parameterization. Received: 16 May 1997 / Accepted: 9 September 1997 相似文献
3.
Plant species-specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO2 and nutrients 总被引:1,自引:0,他引:1
Matthias C. Rillig Michael F. Allen John N. Klironomos Nona R. Chiariello Christopher B. Field 《Oecologia》1998,113(2):252-259
Five co-occurring plant species from an annual mediterranean grassland were grown in monoculture for 4 months in pots inside
open-top chambers at the Jasper Ridge Biological Preserve (San Mateo County, California). The plants were exposed to elevated
atmospheric CO2 and soil nutrient enrichment in a complete factorial experiment. The response of root-inhabiting non-mycorrhizal and arbuscular
mycorrhizal fungi to the altered resource base depended strongly on the plant species. Elevated CO2 and fertilization altered the ratio of non-mycorrhizal to mycorrhizal fungal colonization for some plant species, but not
for others. Percent root infection by non-mycorrhizal fungi increased by over 500% for Linanthus parviflorus in elevated CO2, but decreased by over 80% for Bromus hordeaceus. By contrast, the mean percent infection by mycorrhizal fungi increased in response to elevated CO2 for all species, but significantly only for Avena barbata and B. hordeaceus. Percent infection by mycorrhizal fungi increased, decreased, or remained unchanged for different plant hosts in response
to fertilization. There was evidence of a strong interaction between the two treatments for some plant species and non-mycorrhizal
and mycorrhizal fungi. This study demonstrated plant species- and soil fertility-dependent shifts in below-ground plant resource
allocation to different morpho-groups of fungal symbionts. This may have consequences for plant community responses to elevated
CO2 in this California grassland ecosystem.
Received: 2 June 1997 / Accepted: 22 August 1997 相似文献
4.
5.
Effects of elevated CO2 and cutting frequency on plant community structure in a temperate grassland 总被引:1,自引:0,他引:1
Florence Teyssonneyre Catherine Picon-cochard Robert Falcimagne Jean-François Soussana 《Global Change Biology》2002,8(10):1034-1046
Monoliths of a fertile, N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 µmol mol‐‐1) using a Mini‐FACE system, from August 1998 to June 2001 and were subjected to two contrasting cutting frequencies (3 and 6 cuts per year). We report here the effects of the CO2 and cutting frequency factors on the plant community structure and its diversity. Species‐specific responses to elevated CO2 and cutting frequency were observed, which resulted in significant changes in the botanical composition of the grassland monoliths. Elevated CO2 significantly increased the proportion of dicotyledones (forbs + legumes) and reduced that of the monocotyledones (grasses). Management differentiated this response as elevated CO2 increased the proportion of forbs when infrequently and of legumes when frequently defoliated. However, among the two dominant forbs species only one was significantly enhanced by elevated CO2. Moreover, not all grass species responded negatively to high CO2. At a low cutting frequency, the observed decline under ambient CO2 in species diversity (Shannon‐Weaver index) and in forb species number was partly alleviated by elevated CO2. This experiment shows that the botanical composition of temperate grasslands is likely to be affected by the current rise (+ 0.5% per year) in the atmospheric CO2 concentration, and that grassland management guidelines may need to be adapted to a future high CO2 world. 相似文献
6.
Hovenden MJ Wills KE Vander Schoor JK Williams AL Newton PC 《The New phytologist》2008,178(4):815-822
* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+2 masculineC) is reported on flowering times in a native, species-rich, temperate grassland in Tasmania, Australia in both 2004 and 2005. * Elevated [CO2] did not affect average time of first flowering in either year, only affecting three out of 23 species. Warming reduced time to first flowering by an average of 19.1 d in 2004, acting on most species, but did not significantly alter flowering time in 2005, which might be related to the timing of rainfall. Elevated [CO2] and warming treatments did not interact on flowering time. * These results show elevated [CO2] did not alter average flowering time or duration in this grassland; neither did it alter the response to warming. Therefore, flowering phenology appears insensitive to increasing [CO2] in this ecosystem, although the response to warming varies between years but can be strong. 相似文献
7.
We examined whether the effects of elevated CO2 on growth of 1-year old Populus deltoides saplings was a function of the assimilation responses of particular leaf developmental stages. Saplings were grown for 100 days at ambient (approximately 350 ppm) and elevated (ambient + 200 ppm) CO2 in forced-air greenhouses. Biomass, biomass distribution, growth rates, and leaf initiation and expansion rates were unaffected by elevated CO2. Leaf nitrogen (N), the leaf C:N ratio, and leaf lignin concentrations were also unaffected. Carbon gain was significantly greater in expanding leaves of saplings grown at elevated compared to ambient CO2. The Rubisco content in expanding leaves was not affected by CO2 concentration. Carbon gain and Rubisco content were significantly lower in fully expanded leaves of saplings grown at elevated compared to ambient CO2, indicating CO2-induced down-regulation in fully expanded leaves. Elevated CO2 likely had no overall effect on biomass accumulation due to the more rapid decline in carbon gain as leaves matured in saplings grown at elevated compared to ambient CO2. This decline in carbon gain has been documented in other species and shown to be related to a balance between sink/source balance and acclimation. Our data suggest that variation in growth responses to elevated CO2 can result from differences in leaf assimilation responses in expanding versus expanded leaves as they develop under elevated CO2. Received: 28 September 1998 / Accepted: 23 June 1999 相似文献
8.
Mycorrhizas alter the acquisition of carbon and nutrients, thereby affecting numerous plant and ecosystem processes. It is important, therefore, to determine how mycorrhizal populations will change under possible future climate conditions. Individual and interactive effects of elevated atmospheric CO2 concentration and atmospheric temperature were assessed in a 2×2 factorial design [ambient and elevated (200 ppm above ambient) CO2 concentrations, and ambient and elevated (4°C above ambient) temperatures]. In June 1993, 2-year-old Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings were planted in 12 environment-tracking chambers (n=3) containing reconstructed, low-nitrogen, native forest soil. Climate treatments were imposed shortly thereafter, and the seedlings grew until June 1997. Soil cores were taken twice per year during the exposure period. We present findings on changes in the community structure of ectomycorrhizal (ECM) root tips, categorized into morphotypes using gross morphological traits. A diverse and stable community of morphotypes (a total of 40) was encountered; no more than 30 of which were seen at any sampling time. In the first sample, there were only 15 morphotypes found in the 12 chambers. Morphotype numbers increased during the first half of the experiment, remaining fairly constant thereafter. Near the end of the exposure, elevated-temperature treatments maintained more morphotypes than ambient treatments. However, overall, absolute measures (number of ECM tips) were affected primarily by CO2 treatment, whereas proportional measures (e.g., Simpson’s index) were affected primarily by temperature. While some morphotypes were negatively affected seasonally by higher temperatures (putative Rhizopogon group), others (Cenococcum) seemed to thrive. Underlying the dominant patterns of change in diversity, driven by the Rhizopogon group, subdominant populations responded slightly differently. Community diversity through time tended to increase at a greater rate for all subdominant populations compared with the rate when dominant populations were included. Received: 16 August 1999 / Accepted: 2 March 2000 相似文献
9.
10.
11.
12.
The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. 总被引:3,自引:0,他引:3
This study investigated changes in carbon-based plant secondary metabolite concentrations in the needles of Pinus sylvestris saplings, in response to long-term elevation of atmospheric CO2, at two rates of nutrient supply. Experimental trees were grown for 3 years in eight open-top chambers (OTCs), four of which were maintained at ambient (∼350 μmol mol−1) and four at elevated (700 μmol mol−1) CO2 concentrations, plus four open air control plots. Within each of these treatments, plants received either high (7.0 g N m−2 year−1 added) or low (no nutrients added) rates of nutrient supply for two years. Needles from lateral branches were analysed chemically for concentrations of condensed tannins and monoterpenes. Biochemical determinations of cellulase digestibility and protein precipitating capacity of their phenolic extracts were made because of their potential of importance in ecological interactions between pine and other organisms including herbivores and decomposers. Elevated CO2 concentration caused an increase (P<0.05) in dry mass per needle, tree height and the concentration of the monoterpene α-pinene, but there were no direct effects of CO2 concentration on any of the other chemical measurements made. High nutrient availability increased cellulase digestibility of pine needles. There was a significant negative effect of the OTCs on protein precipitating capacity of the needle extracts in comparison to the open-air controls. Results suggest that predicted changes in atmospheric CO2 concentration will be insufficient to produce large changes in the concentration of condensed tannins and monoterpenes in Scots pine. Processes which are influenced by these compounds, such as decomposition and herbivore food selection, along with their effects on ecosystem functioning, are therefore unlikely to be directly affected through changes in these secondary metabolites. Received: 20 October 1997 / Accepted: 28 February 1998 相似文献
13.
Effects of long term CO2 enrichment on microbial community structure in calcareous grassland 总被引:1,自引:0,他引:1
Diana Ebersberger Nicola Wermbter Pascal A. Niklaus Ellen Kandeler 《Plant and Soil》2004,264(1-2):313-323
Elevated CO2 generally increases plant productivity, and has been found to alter plant community composition in many ecosystems. Because soil microbes depend on plant-derived C and are often associated with specific plant species, elevated CO2 has the potential to alter structure and functioning of soil microbial communities. We investigated soil microbial community structure of a species-rich semi-natural calcareous grassland that had been exposed to elevated CO2 (600 μL L?1) for 6 growing seasons. We analysed microbial community structure using phospholipid fatty acid (PLFA) profiles and DNA fingerprints obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA fragments amplified by the Polymerase Chain Reaction (PCR). PLFA profiles were not affected by CO2 enrichment and the ratio of fungal and bacterial PLFA did not change. Ordination analysis of DNA fingerprints revealed a significant relation between CO2 enrichment and variation in DNA fingerprints in summer (P=0.01), but not in spring. This variation was due to changes in low-intensity bands, while dominant bands did not differ between CO2 treatments. Diversity of the bacterial community, as assessed by number of bands in DNA fingerprints and calculation of Shannon diversity indices, was not affected by elevated CO2. Overall, only minor effects on microbial community structure were detected, corroborating earlier findings that soil carbon inputs did probably change much less than suggested by plant photosynthetic responses. 相似文献
14.
To test inter- and intraspecific variability in the responsiveness to elevated CO2, 9–14 different genotypes of each of 12 perennial species from fertile permanent grassland were grown in Lolium perenne swards under ambient (35 Pa) and elevated (60 Pa) atmospheric partial pressure of CO2 (pCO2) for 3 years in a free air carbon dioxide enrichment (FACE) experiment. The plant species were grouped according to their functional types: grasses (L. perenne, L. multiflorum, Arrhenatherum elatius, Dactylis glomerata, Festuca pratensis, Holcus lanatus, Trisetum flavescens), non-legume dicots (Rumex obtusifolius, R. acetosa, Ranunculus friesianus), and legumes (Trifolium repens, T. pratense). Yield (above a cutting height of 4.5 cm) was measured three times per year. The results were as follow. (1) There were highly significant differences in the responsiveness to elevated pCO2 between the three functional types; legumes showed the strongest and grasses the weakest yield increase at elevated pCO2. (2) There were differences in the temporal development of responsiveness to elevated pCO2 among the functional types. The responsiveness of the legumes declined from the first to the second year, while the responsiveness of the non-legume dicots increased over the 3 years. During the growing season, the grasses and the non-legume dicots showed the strongest response to elevated pCO2 during reproductive growth in the spring. (3) There were no significant genotypic differences in responsiveness to elevated pCO2. Our results suggest that, due to interspecific differences in the responsiveness to elevated pCO2, the species proportion within fertile temperate grassland may change if the increase in pCO2 continues. Due to the temporal differences in the responsiveness to elevated pCO2 among species, complex effects of elevated pCO2 on competitive interactions in mixed swards must be expected. The existence of genotypic variability in the responsiveness to elevated pCO2, on which selection could act, was not found under our experimental conditions. Received: 11 May 1997 / Accepted: 11 August 1997 相似文献
15.
Soil moisture profiles can affect species composition and ecosystem processes, but the effects of increased concentrations of atmospheric carbon dioxide ([CO2]) on the vertical distribution of plant water uptake have not been studied. Because plant species composition affects soil moisture profiles, and is likely to shift under elevated [CO2], it is also important to test whether the indirect effects of [CO2] on soil water content may depend on species composition. We examined the effects of elevated [CO2] and species composition on soil moisture profiles in an annual grassland of California. We grew monocultures and a mixture of Avena barbata and Hemizonia congesta– the dominant species of two phenological groups – in microcosms exposed to ambient (~370 μmol mol?1) and elevated (~700 μmol mol?1) [CO2]. Both species increased intrinsic and yield‐based water use efficiency under elevated [CO2], but soil moisture increased only in communities with A. barbata, the dominant early‐season annual grass. In A. barbata monocultures, the [CO2] treatment did not affect the depth distribution of soil water loss. In contrast to communities with A. barbata, monocultures of H. congesta, a late‐season annual forb, did not conserve water under elevated [CO2], reflecting the increased growth of these plants. In late spring, elevated [CO2] also increased the efficiency of deep roots in H. congesta monocultures. Under ambient [CO2], roots below 60 cm accounted for 22% of total root biomass and were associated with 9% of total water loss, whereas in elevated [CO2], 16% of total belowground biomass was associated with 34% of total water loss. Both soil moisture and isotope data showed that H. congesta monocultures grown under elevated [CO2] began extracting water from deep soils 2 weeks earlier than plants in ambient [CO2]. 相似文献
16.
We examined the extent to which carbon investment into secondary compounds in loblolly pine (Pinus taeda L.) is changed by the interactive effect of elevated CO2 and N availability and whether differences among treatments are the result of size-dependent changes. Seedlings were grown for 138 days at two CO2 partial pressures (35 and 70 Pa CO2) and four N solution concentrations (0.5, 1.5, 3.5, and 6.5 mmol l−1 NO3NH4) and concentrations of total phenolics and condensed tannins were determined four times during plant development in primary and fascicular needles, stems and lateral and tap roots. Concentrations of total phenolics in lateral roots and condensed tannins in tap roots were relatively high regardless of treatment. In the smallest seedlings secondary compound concentrations were relatively high and decreased in the initial growth phase. Thereafter condensed tannins accumulated strongly during plant maturation in all plant parts except in lateral roots, where concentrations did not change. Concentrations of total phenolics continued to decrease in lateral roots while they remained constant in all other plant parts. At the final harvest plants grown at elevated CO2 or low N availability showed increased concentrations of condensed tannins in aboveground parts. The CO2 effect, however, disappeared when size differences were adjusted for, indicating that CO2 only indirectly affected concentrations of condensed tannins through accelerating growth. Concentrations of total phenolics increased directly in response to low N availability and elevated CO2 in primary and fascicular needles and in lateral roots, which is consistent with predictions of the carbon-nutrient balance (CNB) hypothesis. The CNB hypothesis is also supported by the strong positive correlations between soluble sugar and total phenolics and between starch and condensed tannins. The results suggest that predictions of the CNB hypothesis could be improved if developmentally induced changes of secondary compounds were included. Received: 27 March 1997 / Accepted: 25 July 1997 相似文献
17.
Earthworms make up the dominant fraction of the biomass of soil animals in most temperate grasslands and have important effects
on the structure and function of these ecosystems. We hypothesized that the effects of elevated atmospheric CO2 on soil moisture and plant biomass production would increase earthworm activity, expressed as surface cast production. Using
a screen-aided CO2 control facility (open top and open bottom rings), eight 1.2-m2 grassland plots in Switzerland have been maintained since March 1994 at ambient CO2 concentrations (350 μl CO2 l−1) and eight at elevated CO2 (610 μl CO2 l−1). Cumulative earthworm surface cast production measured 40 times over 1 year (April 1995–April 1996) in plots treated with
elevated CO2 (2206 g dry mass m−2 year−1) was 35% greater (P<0.05) than that measured in plant communities maintained at ambient CO2 (1633 g dry mass m−2 year−1). At these rates of surface cast production, worms would require about 100 years to egest the equivalent of the amount of
soil now found in the Ah horizon (top 15 cm) under current ambient CO2 concentrations, and 75 years under elevated CO2. Elevated atmospheric CO2 had no influence on the seasonality of earthworm activity. Cumulative surface cast production measured over the 7-week period
immediately following the 6-week summer dry period in 1995 (no surface casting) was positively correlated (P<0.05) with the mean soil water content calculated over this dry and subsequent wetter period, when viewed across all treatments.
However, no correlations were observed with soil temperature or with annual aboveground plant biomass productivity. No CO2-related differences were observed in total nitrogen (Ntot) and organic carbon (Corg) concentration of surface casts, although concentrations of both elements varied seasonally. The CO2-induced increase in earthworm surface casting activity corresponded to a 30% increase of the amount of Ntot (8.9 mg N m−2 vs. 6.9 mg N m−2) and Corg (126 mg C m−2 vs. 94 mg C m−2) egested by the worms in one year. Thus, our results demonstrate an important indirect stimulatory effect of elevated atmospheric
CO2 on earthworm activity which may have profound effects on ecosystem function and plant community structure in the long term.
Received: 3 November 1996 / Accepted: 11 January 1997 相似文献
18.
Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland 总被引:5,自引:0,他引:5
We determined the effects of elevated [CO2] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year
CO2 enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient
[CO2] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns
of C4 grasses in these plots and in unchambered plots. Elevated [CO2] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%) but had no effect on root litter
(mostly fine root fragments and sloughed cortex material >500 μm). Soil C and N stocks also increased under elevated [CO2], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 μm). The mostly root-like,
light POM (density ≤1.8 Mg m-3) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m-3) accumulated under elevated [CO2]. Overall, rhizome and root C:N ratios were not greatly affected by CO2 enrichment. However, elevated [CO2] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the
C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO2 enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation)
but that any changes in N dynamics were insufficient to prevent significant plant growth responses.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
Model terrestrial ecosystems were set-up in the Ecotron controlled environment facility. The effects of elevated CO2 (ambient + 200 mol/mol) and temperature (ambient + 2.0°C) on plant chemistry, the abundance of the peach potato aphid Myzus persicae, and on the performance of one of its parasitoids Aphidius matricariae, were studied. Total above-ground plant biomass at the end of the experiment was not affected by elevated atmospheric CO2, nor were foliar nitrogen and carbon concentrations. Elevated temperature decreased final plant biomass while leaf nitrogen
concentrations increased. Aphid abundance was enhanced by both the␣CO2 and temperature treatment. Parasitism rates remained unchanged in elevated CO2, but showed an increasing trend in conditions of elevated temperature. Our results suggest that M. persicae, an important pest of many crops, might increase its abundance under conditions of climate change.
Received: 26 January 1998 / Accepted: 20 April 1998 相似文献