首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Na+ + K+)-ATPase of cultured chick sensory neurons was studied with the aid of antibodies specific for this enzyme. Immunofluorescent labeling indicated the (Na+ + K+)-ATPase is evenly distributed on the neuronal cell surface; cell bodies, neurites, and growth cones were labeled with comparable intensity. Pulse-chase experiments with [35S]methionine, followed by immunoprecipitation, indicated concurrent synthesis and rapid association of the alpha (Mr = 105,000) and beta (Mr = 47,000) subunits. The alpha subunit is oligosaccharide-free while the beta subunit contains three Asn-linked oligosaccharide chains attached to a core peptide of 32,000 molecular weight. The time required for oligosaccharide processing of the newly synthesized beta subunit to endoglycosidase H-resistance suggests the (Na+ + K+)-ATPase takes 45-60 min to move from the site of polypeptide synthesis to the Golgi apparatus. Significantly less time was required for transport through the Golgi apparatus and insertion in the plasma membrane. From 30% to 55% of the newly synthesized (Na+ + K+)-ATPase did not appear on the cell surface but accumulated intracellularly. When tunicamycin was used to inhibit glycosylation of the beta subunit, there was no effect upon subunit assembly, intracellular transport, or degradation rate (t1/2 = 40 h).  相似文献   

2.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

3.
G Chin  M Forgac 《Biochemistry》1983,22(14):3405-3410
The (Na+ and K+)-stimulated adenosinetriphosphatase [(Na+,K+)-ATPase] consists of two different polypeptides, alpha and beta, both of which are embedded in the plasma membrane. The alpha chain from dog kidney (Na+,K+)-ATPase can be hydrolyzed at specific sites by trypsin and chymotrypsin [Castro, J., & Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228]. In order to position these sites with respect to the lipid bilayer, we have treated sealed, inside out vesicles from human red cells and unsealed kidney enzyme membranes with trypsin and chymotrypsin and have used ouabain-stimulated phosphorylation to identify the (Na+,K+)-ATPase and its fragments. All of the proteolytic sites observed in the kidney membranes are accessible in the inside out vesicles. The ouabain-inhibitable uptake of 86Rb+ in human red blood cells is resistant to externally added chymotrypsin. These results indicate that the proteolytic sites of the (Na+,K+)-ATPase are exposed on the cytoplasmic side of the membrane.  相似文献   

4.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

5.
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (J?rgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).  相似文献   

6.
The orientation of amino groups in the membrane in the alpha- and beta-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of alpha-subunit, beta-subunit and proteolytic fragments of alpha-subunit. Both the alpha- and the beta-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the beta-subunit are located on the extracellular surface. In the alpha-subunit, 65-80% of modified groups are localized to the cytoplasmic surface and 20-35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the alpha-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the alpha-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the beta-subunit being on the extracellular surface, while the alpha-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

7.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

8.
cDNA complementary to mRNA coding for the beta subunit of dog renal (Na+ + K+)-ATPase has been cloned into lambda gt11 and the nucleotide sequence of the DNA has been determined. The amino acid sequence of the beta subunit polypeptide has also been deduced from the DNA. The mature form of the dog kidney beta subunit contains 302 amino acids with three potential asparagine-linked attachment sites for carbohydrate. The initiation methionine is removed during processing of the polypeptide to its mature form. Although the beta subunit is an integral membrane protein there is no signal sequence for the polypeptide, and hydropathy analysis predicts that the beta subunit polypeptide spans the cell membrane only once. Secondary structure predictions and a model for the structure of the beta subunit are proposed. DNA sequencing of the 5' non-coding region of the mRNA revealed a 200 bp inverted repeat from the coding region. Blot hybridization of a fragment of the beta subunit cDNA identified a single mRNA species of 2.7 kb in dog kidney and several rat tissues. RNA from rat liver was deficient in mRNA that hybridized to the dog kidney beta subunit cDNA, although mRNA that hybridized to an alpha subunit cDNA was detected. RNA from a human hepatoma cell line, HepG2, however, contained comparable levels of mRNA for both the alpha and the beta subunits.  相似文献   

9.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4 X 10(11) is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

10.
Photoaffinity labeling of (Na+K+)-ATPase with [125I]iodoazidocymarin   总被引:3,自引:0,他引:3  
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources.  相似文献   

11.
The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells (Quaroni, A., and K. J. Isselbacher. 1981. J. Natl. Cancer Inst. 67:1353-1362) was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit (Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. 1985. Kidney Int. 28:899-913), was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.  相似文献   

12.
1. (Na+ + K+)-ATPase from rectal glands of Squalus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the alpha subunit (Mr 106000) and two on the beta subunit (Mr 40000). The beta subunit also contains one disulphide bridge. 2. The reaction of (Na+ + K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each alpha subunit and one on each beta subunit. Reaction of these groups with N-ethylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each alpha subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5-10 mM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ + K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

13.
14.
cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Complementary DNA to pig gastric mRNA encoding (H+ + K+)-ATPase was cloned, and its amino acid sequence was deduced from the nucleotide sequence. The enzyme contained 1034 amino acid residues (Mr. 114,285) including the initiation methionine. The sequence of pig (H+ + K+)-ATPase was highly homologous with that of the corresponding enzyme from rat, but had high degree of synonymous codon changes. Potential sites of phosphorylation by cAMP-dependent protein kinase and N-linked glycosylation sites were identified. The amino terminal region contained a lysine-rich sequence similar to that of the alpha subunit of (Na+ + K+)-ATPase, although a cluster of glycine residues was inserted into the sequence of the (H+ + K+)-ATPase. As the pig enzyme is advantageous for biochemical studies, the information of the primary structure is useful for further detailed studies.  相似文献   

15.
Photoaffinity labeling of (Na+ + K+)-ATPase in erythrocyte membranes with cardiotonic steroid derivatives, followed by gel electrophoresis, requires a radiolabel of very high specific activity, since the enzyme represents less than 0.05% of the total membrane protein. We report the synthesis of a radioiodinated, photosensitive derivative of the cardiac glycoside, 3-beta-O-(4-amino-4,6-dideoxy-beta-D-galactosyl)digitoxigenin, with very high specific activity. The product, [125I]iodoazidogalactosyl digitoxigenin ([125I]IAGD), is carrier-free with a specific activity of 2200 Ci/mmol. Incubation of [125I]IAGD (1.8 nM) with human erythrocyte membranes (300 micrograms protein), followed by photolysis and analysis by SDS-PAGE, showed specific radiolabeling of a polypeptide that had the same molecular weight as catalytic alpha subunit (100,000 Mr) of (Na+ + K+)-ATPase in eel electroplax microsomes. Photoaffinity labeling of erythrocyte and electroplax membranes by [125I]IAGD was specific for the cardiac glycoside binding site of (Na+ + K+)-ATPase since radiolabeling of the alpha subunit was inhibited when ouabain was included in the pre-photolysis incubation. [125I]IAGD can, therefore, be used as a probe in structural studies of human erythrocyte membrane (Na+ + K+)-ATPase.  相似文献   

16.
The beta-subunit of dog kidney (Na+ + K+)-ATPase is a sialoglycoprotein and contains three potential N-glycosylation sites. In this study, the oligosaccharide chains of purified dog kidney beta-subunit were labeled with tritium by oxidation with sodium periodate or galactose oxidase followed by NaB3H4 reduction. The beta-subunit was extensively digested by trypsin and the radioactive peptides were purified by HPLC. The enzyme, glycopeptidase A, which catalyzes the removal of N-linked oligosaccharide chains and the conversion of the glycosylated Asn residue to Asp, was used to demonstrate that a number of purified beta-subunit tryptic peptides were glycosylated. Amino-acid analysis of these beta-subunit peptides following glycopeptidase-A treatment revealed the expected Asn to Asp conversion for Asn-157, Asn-192 and Asn-264, demonstrating that all three potential N-glycosylation sites of the dog kidney beta-subunit are glycosylated. In addition, amino-acid sequence data suggest that a disulfide bond exists between Cys-158 and Cys-174.  相似文献   

17.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane.  相似文献   

18.
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.  相似文献   

19.
Sodium and potassium adenosine triphosphatase ((Na + K)-ATPase) consists of two polypeptides, a large molecular weight polypeptide (MW 84,000 to 102,000) and a sialoglycoprotein (MW 35,000 to 57,000). Trypsin treatment of this complex selectively cleaves the large polypeptide into two fragments with molecular weights of 62,000 and 43,000. Simultaneously with the appearance of these fragments, (Na + K)-APTase activity is destroyed. Trypsin treatment of phosphorylated enzyme shows that he 43,000 molecular weight fragment is phosphorylated. If (Na + K)-ATPase is digested with trypsin in the presence of ATP, a 90,000 molecular weight fragment is produced. Disappearance of the large polypeptide, and loss of ATPase activity parallel the production of this fragment. Addition of strophanthidin to this mixture significantly lowers the amount of the 90,000 molecular weight fragment produced. Experiments on (Na + K)-ATPase of the red cell membrane suggest that trypsin is cleaving (Na + K)-ATPase at the interior surface of the plasma membrane.  相似文献   

20.
Highly purified lamb kidney (Na+ + K+)-ATPase was photoaffinity labeled with the tritiated 2-nitro-5-azidobenzoyl derivative of ouabain (NAB-ouabain). The labeled (Na+ + K+)-ATPase was mixed with unlabeled carrier enzyme. Two proteolipid (gamma 1 and gamma 2) fractions were then isolated by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. The two fractions were interchangeable when rechromatographed on the LH-60 column, suggesting that gamma 1 is an aggregated form of gamma 2. The total yield was 0.8-1.5 mol of gamma component per mol of catalytic subunit recovered. This indicates that the gamma component is present in stoichiometric amounts in the Na+ + K+)-ATPase. The proteolipids that were labeled with NAB-ouabain copurified with the unlabeled proteolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号