首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.  相似文献   

2.
Enzymatic activity which catalyzes the synthesis of 4-methyleneglutamine from 4-methyleneglutamic acid + ammonia was detected in and partially purified from cotyledons of peanut seeds germinated 5 to 7 days. This activity was separated from glutamine and asparagine synthetases by ammonium sulfate precipitation and DEAE-cellulose chromatography. The enzyme is distinct from these other amide synthetases in its substrate specificity, lack of amide/hydroxylamine exchange, and use of ammonium ion as amide donor together with formation of AMP from ATP. The activity is quite labile in solution, but is retained as a precipitate in ammonium sulfate or when frozen in 12.5% glycerol at -77 degrees C. This activity might be responsible for catalyzing the rapid synthesis of 4-methyleneglutamine which occurs in germinating peanuts.  相似文献   

3.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

4.
The metabolism of glutamine in the leaf and subtended fruit of the aging pea (Pisum sativum L. cv. Burpeeana) has been studied in relation to changes in the protein, chlorophyll, and free amino acid content of each organ during ontogenesis. Glutamine synthetase [EC 6.3.1.2] activity was measured during development and senescence in each organ. Glutamate synthetase [EC 2.6.1.53] activity was followed in the pod and cotyledon during development and maturation. Maximal glutamine synthetase activity and free amino acid accumulation occurred together in the young leaf. Glutamine synthetase (in vitro) in leaf extracts greatly exceeded the requirement (in vivo) for reduced N in the organ. Glutamine synthetase activity, although declining in the senescing leaf, was sufficient (in vitro) to produce glutamine from all of the N released during protein hydrolysis (in vivo). Maximal glutamine synthetase activity in the pod was recorded 6 days after the peak accumulation of the free amino acids in this organ.

In the young pod, free amino acids accumulated as glutamate synthetase activity increased. Maximal pod glutamate synthetase activity occurred simultaneously with maximal leaf glutamine synthetase activity, but 6 days prior to the corresponding maximum of glutamine synthetase in the pod. Cotyledonary glutamate synthetase activity increased during the assimilatory phase of embryo growth which coincided with the loss of protein and free amino acids from the leaf and pod; maximal activity was recorded simultaneously with maximal pod glutamine synthetase.

We suggest that the activity of glutamine synthetase in the supply organs (leaf, pod) furnishes the translocated amide necessary for the N nutrition of the cotyledon. The subsequent activity of glutamate synthetase could provide a mechanism for the transfer of imported amide N to alpha amino N subsequently used in protein synthesis. In vitro measurements of enzyme activity indicate there was sufficient catalytic potential in vivo to accomplish these proposed roles.

  相似文献   

5.
The formation of glutaminyl-tRNA (Gln-tRNA) in Bacilli, chloroplasts, and mitochondria occurs in a two-step reaction. This involves misacylation of tRNA(Gln) with glutamate by glutamyl-tRNA synthetase and subsequent amidation of Glu-tRNA(Gln) to the correctly acylated Gln-tRNA(Gln) by a specific amidotransferase (Sch?n, A., Kannangara, C. G., Gough, S., and S?ll, D. (1988) Nature 331, 187-190). Here we demonstrate the existence of this pathway in green algae and describe the purification of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii. The purified enzyme showed an Mr of approximately 120,000 when analyzed by glycerol gradient sedimentation and gel filtration. An apparent Mr of 63,000 of the denatured protein was demonstrated by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. This indicates that the enzyme possesses an alpha 2 structure. The substrate for the purified enzyme is Glu-tRNA(Gln) but not Glu-tRNA(Glu). The enzyme requires ATP, Mg2+, and an amide donor for the conversion. Acceptable amide donors are glutamine, asparagine, and ammonia. Blocking of the glutamine-dependent reaction by alkylation of the protein with 6-diazo-5-oxonorleucine did not inhibit the ammonia-dependent reaction, suggesting that the enzyme has separate glutamine and ammonia binding sites. As suggested by Wilcox (Wilcox, M. (1969) Eur. J. Biochem. 11, 405-412) the amidation reaction may involve glutamyl-phosphate formation, since ATP is cleaved to ADP when the enzyme is incubated with Glu-tRNA(Gln) and ATP. In common with other glutamine amidotransferases, the enzyme also possesses low glutaminase activity. The purified Glu-tRNA(Gln) amidotransferase forms a stable complex with Glu-tRNA(Gln) in the presence of ATP and Mg2+ but in the absence of the amide donor as determined by gradient centrifugation.  相似文献   

6.
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4+ could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.  相似文献   

7.
Asparagine synthetase was purified 240-fold from soybean (Glycine max (L.) Merr.) root nodules with a final recovery of 5% using Reactive Blue 2-crossed linked Agarose affinity gel chromatography. High levels of sulfhydryl protectants were required and the inclusion to glycerol and substrates in the extraction buffer helped to stabilize the enzyme. The final preparation had a specific activity of 3.77 mkat/kg protein when assayed at 30°C and was free of contaminating asparaginase activity. The enzyme had a broad pH maximum around pH 8.0 and apparent Km values for the substrates aspartate, Mg · ATP, and glutamine were 1.24 mM, 0.076 mM and 0.16 mM, respectively. Ammonium ion could partially replace glutamine as the nitrogen donor. Initial velocity patterns yielded parallel inverse plots with all substrate pairs suggesting an overall ping-pong reaction mechanism. Product inhibition patterns provided evidence that glutamine was the first substrate to bind to the enzyme and asparagine was the last product released.  相似文献   

8.
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.  相似文献   

9.
Gln-tRNA(Gln) is synthesized from Glu-tRNA(Gln) in most microorganisms by a tRNA-dependent amidotransferase in a reaction requiring ATP and an amide donor such as glutamine. GatDE is a heterodimeric amidotransferase that is ubiquitous in Archaea. GatD resembles bacterial asparaginases and is expected to function in amide donor hydrolysis. We show here that Methanothermobacter thermautotrophicus GatD acts as a glutaminase but only in the presence of both Glu-tRNA(Gln) and the other subunit, GatE. The fact that only Glu-tRNA(Gln) but not tRNA(Gln) could activate the glutaminase activity of GatD suggests that glutamine hydrolysis is coupled tightly to transamidation. M. thermautotrophicus GatDE enzymes that were mutated in GatD at each of the four critical asparaginase-active site residues lost the ability to hydrolyze glutamine and were unable to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) when glutamine was the amide donor. However, ammonium chloride rescued the activities of these mutants, suggesting that the integrity of the ATPase and the transferase activities in the mutant GatDE enzymes was maintained. In addition, pyroglutamyl-tRNA(Gln) accumulated during the reaction catalyzed by the glutaminase-deficient mutants or by GatE alone. The pyroglutamyl-tRNA is most likely a cyclized by-product derived from gamma-phosphoryl-Glu-tRNA(Gln), the proposed high energy intermediate in Glu-tRNA(Gln) transamidation. That GatE alone could form the intermediate indicates that GatE is a Glu-tRNA(Gln) kinase. The activation of Glu-tRNA(Gln) via gamma-phosphorylation bears a similarity to the mechanism used by glutamine synthetase, which may point to an ancient link between glutamine synthesized for metabolism and translation.  相似文献   

10.
Glutamine, in the presence of alpha-oxoglutarate, stimulates nicotinamide nucleotide oxidation by crude extracts of pea roots and leads to a reductant-dependent formation of glutamate. Commercially available asparagine also stimulates nicotinamide nucleotide oxidation in the presence of alpha-oxoglutarate, but the reaction causing the stimulation can occur in the absence of a reductant, is inhibited by transaminase inhibitors, and is additive to the glutamine reaction. The asparagine used was found to be contaminated with aspartate. Repurified asparagine, chromatographically free of aspartate, did not stimulate the rate of nicotinamide nucleotide oxidation, and it is probable that the original stimulation was due to aspartate contamination. It is concluded that pea-root glutamine (amide)-alpha-oxoglutarate aminotransferase (glutamate synthase), in common with the enzyme in leaves, is specific for glutamine as the N donor and alpha-oxoglutarate as the N acceptor. The significance of the enzyme in conjunction with glutamine synthetase in the assimilation of nitrate by roots is discussed.  相似文献   

11.
Many bacteria form Gln-tRNAGln and Asn-tRNAAsn by conversion of the misacylated Glu-tRNAGln and Asp-tRNAAsn species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction.A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNAGln or Asn-tRNAAsn.  相似文献   

12.
Glutamine phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14) catalyzes the transfer of the amide group of glutamine to 5-phospho-alpha-D-ribose-1-pyrophosphate. It is the first enzyme committed to the synthesis of purines by the de novo pathway. Previous assays of enzyme activity have either measured the phosphoribosylpyrophosphate-dependent disappearance of radioactive glutamine or have linked this reaction to subsequent steps in the purine pathway. A new assay for activity of the enzyme by directly measuring the synthesis of the product of the reaction. 5-beta-phosphoribosyl-1-amine, using [1-14C]phosphoribosylpyrophosphate as substrate is described. Substrate and product are separated by thin-layer chromatography and identified by autoradiography. Glutamine or ammonia may be used as substrates; the apparent Km values of the human lymphoblast enzyme are 0.46 mM for glutamine and 0.71 mM for ammonia. GMP is a considerably more potent inhibitor of the human lymphoblast enzyme than is AMP; 6-diazo-5-oxo-L-norleucine inhibits only glutamine-dependent activity and has no effect on ammonia-dependent activity.  相似文献   

13.
The anthranilate synthase aggregate from Bacillus subtilis is composed of two nonidentical subunits, denoted E and X, which are readily associated or dissociated. A complex of subunit E and X can utilize glutamine or ammonia as substrates in the formation of anthranilate. Partially purified subunit E is capable of using only ammonia as the amide donor in the anthranilate synthase reaction. The stability of the EX complex is strongly influenced by glutamine and by the concentrations of the subunits. Glutamine stabilizes the aggregate as a molecular species in which the velocity of the glutamine-reactive anthranilate synthase is a linear function of protein concentration. In the absence of glutamine the aggregate is readily dissociated following dilution of the extract; that is, velocity concaves upward as a function of increasing protein concentration. Reassociation of the EX complex is characterized by a velocity lag (or hysteretic response) before steady-state velocity for the glutamine-reactive anthranilate synthase is reached. We propose that association and dissociation of the anthranilate synthase aggregate may be physiologically significant and provide a control mechanism whereby repression or derepression causes disproportionate losses or gains in activity by virtue of protein-protein interactions between subunits E and X.  相似文献   

14.
A Sch?n  H Hottinger  D S?ll 《Biochimie》1988,70(3):391-394
Aminoacylation studies with Lactobacillus bulgaricus show that this organism possesses glutamyl-tRNA synthetase activity; however, glutamyl-tRNA synthetase activity cannot be demonstrated. Instead, Glu-tRNAGln, which is formed by glutamyl-tRNA synthetase, is amidated by a specific amidotransferase to Gln-tRNAGln. The amide donor in this reaction is glutamine. Thus, Gln-tRNAGln in this organism is not formed by direct glutaminylation of tRNAGln, but instead by a pathway which involves misaminoacylation and transamidation.  相似文献   

15.
Glutamine phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14) catalyzes the transfer of the amide group of glutamine to 5-phospho-α- -ribose-1-pyrophosphate. It is the first enzyme committed to the synthesis of purines by the de novo pathway. Previous assays of enzyme activity have either measured the phosphoribosylpyrophosphate-dependent disappearance of radioactive glutamine or have linked this reaction to subsequent steps in the purine pathway. A new assay for activity of the enzyme by directly measuring the synthesis of the product of the reaction, 5-β-phosphoribosyl-1-amine, using [1-14C]phosphoribosylpyrophosphate as substrate is described. Substrate and product are separated by thin-layer chromatography and identified by autoradiography. Glutamine or ammonia may be used as substrates; the apparent Km values of the human lymphoblast enzyme are 0.46 m for glutamine and 0.71 m for ammonia. GMP is a considerably more potent inhibitor of the human lymphoblast enzyme than is AMP; 6-diazo-5-oxo- -norleucine inhibits only glutamine-dependent activity and has no effect on ammonia-dependent activity.  相似文献   

16.
Asparagine synthetase (L-aspartate:ammonia ligase (AMP-forming, EC 6.3.1.1) activity in rat liver increased when the animals were put on a low casein diet. The enzyme was purified about 280-fold from the supernatant of rat liver homogenate by a procedure comprising ammonium sulfate fractionation. DEAE-Sepharose column chromatography, and Sephadex G-100 gel filtration. The optimal pH of the enzyme was in the range 7.4-7.6 with glutamine as an amide donor. The molecular weight was estimated to be approximately 110,000 by gel filtration. Chloride ion was required for the enzyme activity. The apparent Km values for L-aspartate, L-glutamine, ammonium chloride, ATP, and Cl- were calculated to be 0.76, 4.3, 10, 0.14, and 1.7 mM, respectively. The activity was inhibited by L-asparagine, nucleoside triphosphates except ATP, and sulfhydryl reagents. It has been observed that the properties of asparagine synthetase from rat liver are not so different from those of tumors such as Novikoff hepatoma and RADA 1.  相似文献   

17.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

18.
In Bacillus subtilis, the formation of glutaminyl-tRNA is accomplished by first charging tRNA(Gln) with glutamate, which is then amidated. Glutamine was preferred over asparagine and ammonia as the amide donor in vitro. There is a functional analogy of this reaction to that catalyzed by glutamine synthetase. Homogeneous glutamine synthetase, from either B. subtilis or Escherichia coli, catalyzed the amidotransferase reaction but only about 3 to 5% as well as a partially purified preparation from B. subtilis. Several classes of glutamine synthetase mutants of B. subtilis, however, were unaltered in the amidotransferase reaction. In addition, there was no inhibition by inhibitors of either glutamine synthetase or other amidotransferases. A unique, rather labile activity seems to be required for this reaction.  相似文献   

19.
Amino acid residues at several locations in close primary vicinity to a substrate glutamine residue have been recognized as important determinants for the specificities of human plasma factor XIIIa and guinea pig liver transglutaminase (Gorman, J. J., and Folk, J. E. (1981) J. Biol. Chem. 256, 2712-2715). The present studies measure the influence on transglutaminase specificity of some changes in amino acid side chains in a small synthetic glutamine peptide amide, Leu-Gly-Leu-Gly-Gln-Gly-Lys-Val-Leu-GlyNH2, which was designed to contain most of the known elements needed for enzyme recognition. The results are in agreement with previous findings and show that full catalytic activity of each enzyme may be retained upon replacement of the lysine residue by certain other amino acid residues. Evidence is provided that serine in place of glycine at one or more positions causes a significant increase in specificity with factor XIIIa, but not with liver enzyme. The effective substrate property for factor XIIIa seen with the model peptide amide is lost upon reversal of the sequence Val-Leu. This is not the case with the liver enzyme even though replacement of either of these amino acids by alanine causes a pronounced loss in activity with this enzyme. These differences and the effects of various other substitutions in the model peptide amide on the enzymes' specificities points up the relatively stringent structural requirements of factor XIIIa and the rather broad requirements for liver transglutaminase.  相似文献   

20.
A family of four glutamine amidotransferases has a homologous glutamine amide transfer domain, designated purF-type, that is named after purF-encoded glutamine phosphoribosylpyrophosphate amidotransferase. The glutamine amide transfer domain of approximately 194 amino acid residues is at the NH2 terminus of the protein chain. Site-directed mutagenesis was used to replace several of the 9 invariant amino acids in the glutamine amide transfer domain of glutamine phosphoribosylpyrophosphate amidotransferase. The results indicate that a Cys1-His101-Asp29 catalytic triad is involved in the glutamine amide transfer function of this enzyme. The evidence suggests that His101 functions to increase the nucleophilicity of Cys1, which is used to form a glutamine-enzyme covalent intermediate. Asp29 has a role subsequent to formation of the covalent intermediate. The Cys-His-Asp catalytic triad is implicated in the glutamine amide transfer function of purF-type amidotransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号