首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

2.
To study the role of low UV‐B radiation in modulating the response of antioxidants to ozone, 4‐year‐old pine ( Pinus sylvestris L.) and spruce ( Picea abies L.) seedlings potted in natural soil, were exposed in phytochambers to fluctuating ozone concentrations between 9 and 113 nl 1−1 according to field data recorded at Mt Wank (1175 m above sea level, Bavaria, Germany) and two‐times ambient O3 levels. UV‐B radiation was either added at a biologically effective level of ca 1.2 kJ m−2 day−1 , which is close to that found in March at Mt Wank, or was excluded by filters (<0.08 kJ m−2 day−1). After one growth phase current‐year needles were collected and analysed for antioxidative enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6; guaiacol peroxidase, POD, EC 1.11.1.7) and soluble antioxidants (ascorbate, glutathione). CAT, POD, ascorbate and glutathione, but not SOD, were increased in needles of both species in response to twice ambient O3 levels. UV‐B radiation in the presence of ambient O3 caused an increase in total SOD activity in spruce but had no effects on antioxidants in pine. Twice ambient O3 levels together with low UV‐B radiation counteracted the O3‐induced increases in ascorbate and CAT in pine but not in spruce. Under these conditions spruce needles showed the highest antioxidative protection and revealed no indication of lipid peroxidation. Pine needles exposed to UV‐B and elevated O3 levels showed elevated lipid peroxidation and a 5‐fold increase in dehydroascorbate, suggesting that this species was less protected and suffered higher oxidative stress than spruce.  相似文献   

3.
Diazotrophic systems have developed a number of strategies to protect nitrogenase (N2ase; EC 1.18.6.1) from O2 excess and active-oxygen species (AOS). Protection against O2 excess is given by biochemical modifications of N2ase, increased rates of low-efficiency respiration, temporal segregation of N2 fixation and photosynthesis, physical barriers to O2 diffusion, and hemoglobins. On the other hand, AOS may originate from oxidation of N2ase components, ferredoxins, flavodoxins and hemoglobins; interaction among the AOS themselves, or between H2O2 and hemoglobins; and during reactions catalyzed by hydrogenase (EC 1.18.99.1), xanthine oxidase (EC 1.1.3.22) and uricase (EC 1.7.3.3). Active-oxygen species are scavenged enzymatically [superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6). peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11)] or through non-enzymic reaction with low-molecular-weight compounds (ascorbate, α-tocopherol, glutathione).  相似文献   

4.
The carbamate insecticide carbaryl, at concentrations of 10 mg/l and above, significantly stimulated glutathione reductase (GR) and superoxide dismutase (SOD) activity in the cyanobacterium Nostoc muscorum. A low content of total glutathione (GSH + GSSG), decreased photosynthetic activity, and an increased level of H2O2 was observed in pesticide treated cyanobacteria. As no glutathione peroxidase was observed in this species, stimulation of GR and SOD activity, higher production of H2O2, and low glutathione level was attributed to the utilization of GSH to remove H2O2 spontaneously and nonenzymatically under conditions of pesticide toxicity.  相似文献   

5.
Plant glutathione peroxidases   总被引:22,自引:0,他引:22  
Oxidative stress in plants causes the induction of several enzymes, including superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The first two are responsible for converting superoxide to H2O2 and its subsequent reduction to H2O, and the third is involved in recycling of ascorbate. Glutathione peroxidases (GPXs, EC 1.11.1.9) are a family of key enzymes involved in scavenging oxyradicals in animals. Only recently, indications for the existence of this enzyme in plants were reported. Genes with significant sequence homology to one member of the animal GPX family, namely phospholipid hydroperoxide glutathione peroxidase (PHGPX), were isolated from several plants. Cit-SAP, the protein product encoded by the citrus csa gene, which is induced by salt-stress, is so far the only plant PHGPX that has been isolated and characterized. This protein differs from the animal PHGPX in its rate of enzymatic activity and in containing a Cys instead of selenocysteine (Sec) as its presumed catalytic residue. The physiological role of Cit-SAP and its homologs in other plants is not yet known.  相似文献   

6.
In previous research, an in vitro stepwise procedure permitted us to obtain Nicotiana tabacum regenerated plant lines able to grow in the presence of Mn at 2 and 5 mM (Mn-tolerant plants). These plants showed several morpho-physiological and cytological differences in comparison to the Mn-sensitive regenerated plants. In particular, the number of xylem cells and the degree of lignification appeared to be influenced differently by these Mn concentrations. In the present work these Mn-tolerant and Mn-sensitive N. tabacum plants, maintained in the presence of Mn 2 and 5 mM, have been characterized with regards to the uptake of Mn and Fe, the activity of extracellular peroxidases in the stems, and the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in the leaves. The leaf response to an increasing Mn concentration in the medium, corresponded a parallel decrease of Fe content. Plants tolerant of 5 mM Mn showed almost a doubling Mn content over that of the 5 mM Mn-sensitive plants. In the stem, 2 and 5 mM Mn inhibited the extracellular free peroxidases (guaiacol peroxidases) either in the Mn-tolerant plants or in the Mn-sensitive plants. In the Mn-sensitive plants treated with 2 mM Mn the activity of the peroxidases of the ionically and covalently bound wall peroxidases was also depressed. In 5 mM Mn-tolerant plants, an enhanced activity of the covalently bound wall peroxidases was observed. The effect of Mn on the covalently bound wall syringaldazine peroxidases was identical to that observed in the guaiacol peroxidases; the activity was significantly higher in the Mn-tolerant plants grown in the presence of 5 mM Mn. In the leaf, the increase of Mn content inhibited the activity of guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in the Mn-tolerant as well as in the Mn-sensitive plants. However, the effect was greater in the Mn-sensitive plants. Only glutathione reductase did not show significant variation except for the 2 mM Mn-sensitive plants, where an increased activity was detected.  相似文献   

7.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

8.
The antioxidant status of potato ( Solanum tuberosum L.) tubers of two genotypes, cv. Désirée and clone 10337de40 was investigated in relation to susceptibility to internal rust spot (IRS), a Ca2+-related physiological disorder. Concentrations of total calcium within the perimedulla tissue of tubers, grown with a restricted (1 m M CaCl2) Ca2+ supply, were similar in cv. Désirée (IRS resistant) and clone 10337de40 (IRS susceptible). A range of antioxidants was assayed in order to assess antioxidant status in both genotypes under the two Ca2+ treatments. Although no appreciable differences were detected between low Ca2+ and control treatments, certain antioxidants were present at significantly higher levels in the IRS resistant genotype, cv. Désirée. These included dehydroascorbate reductase (EC 1.8.5.1) activity (more than 100% higher), total glutathione content (ca 40% higher), glutathione reductase (EC 1.6.4.2) activity (almost 50% higher), peroxidase (EC 1.11.1.7) activity (ca 60% higher) and superoxide dismutase (EC 1.15.1.1) activity (almost 80% higher). There was no difference in ascorbate content, ascorbate free radical reductase activity (EC 1.6.5.4), α-tocopherol levels and catalase activity (EC 1.11.1.6) between the two genotypes. The possible relationship between resistance to IRS and a superior antioxidant status, found in cv. Désirée, is discussed.  相似文献   

9.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

10.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

11.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

12.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

13.
It has been proposed that antioxidants can be longevity determinants in animals. However, no comprehensive study has been conducted to try to relate free radicals with maximum life span. This study compares the lung tissue of various vertebrate species — amphibia, mammals and birds — showing very different and well known maximum life spans and life energy potentials. The lung antioxidant enzymes superoxide dismutase, catalase, Se-dependent and non-Se-dependent glutathione peroxidases, and glutathione reductase showed significantly negative correlations with maximum life span. The same was observed for the lung antioxidants, reduced glutathione and ascorbate. It is concluded that a generalized decrease in tissue antioxidant capacity is a characteristic of longevous species. It is suggested that a low rate of free radical recycling (free-radical generation and scavenging) can be an important factor involved in the evolution of high maximum animal longevities. A low free-radical production could be responsible for a low rate of damage at critical sites such as mitochondrial DNA.Abbreviations CAT catalase - COX cytochrome oxidase - GPx glutathione peroxidase - GR glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - LEP life energy potential - MDA malondialdehyde - MLSP maximum life span - MR metabolic rate - MW molecular weight - PO2 partial pressure of oxygen - SOD superoxide dismutase - VO2 basal oxygen consumption  相似文献   

14.
To discriminate among possible mechanisms responsible for the differential response to cold temperatures among ecotypes of the C4 grass weed species Echinochloa crus-galli (L.) Beauv., the specific activities of five oxygen-scavenging enzymes responsible for the elimination or reduction of free radicals and hydrogen peroxide during cold-induced photoinhibition were determined in 5-week-old plants of two populations of the species collected from sites of contrasting climates, Québec (QUE) and Mississippi (MISS). Enzyme activities were measured at temperatures ranging from 5 to 30°C. The specific activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase were significantly higher in cold-adapted QUE plants at low assay temperatures than in warm-adapted MISS plants at the same temperature. The specific activities of superoxide dismutase assayed at 5 and 25°C were similar among plants of the two E. crus-galli populations. Ascorbate concentrations were not different among plants of the two populations, suggesting that the observed differences in the specific activities of ascorbate peroxidase assayed at 5°C, truly reflect a better capacity of the QUE enzyme to reduce H2O2 to water at temperature conditions associated with the photoinhibitory process. The enhanced specific activity of four of the five oxygen-scavenging enzymes measured in the cold-adapted QUE population at low assay temperatures correlates with the syndrome of cold-adapted features reported for plants of this population in earlier studies.  相似文献   

15.
16.
Short-term photosensitivity and oxidative stress responses were compared for three groups of marine microalgae: Antarctic microalgae, temperate diatoms and temperate flagellates. In total, 15 low-light-acclimated species were exposed to simulated surface irradiance including ultraviolet radiation (SSI). Photosensitivity was assessed as the rate of recovery of Fv/Fm in the hours following SSI treatment. Before, during and after the SSI treatment, oxidative stress responses were assessed by following xanthophyll content and cycling, and activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase, and glutathione redox status. When acclimated to low irradiance, antioxidant levels were not group specific. Superoxide dismutase activity was positively correlated with cell size, whereas in general, ascorbate peroxidase activity appeared to be lower and glutathione redox status appeared to be higher in the Antarctic than in the temperate species. After SSI exposure, the strong inhibition of PSII was followed by variable rates of recovery, although four species remained photosynthetically inactive. SSI tolerance appeared unrelated to geographic or taxonomic background, or to cell size. PSII recovery was enhanced in species with decreasing superoxide dismutase activity, glutathione redox status and increased xanthophyll cycle activity. We conclude that antioxidant responses are highly species specific and not related to the geographic or taxonomic background. Furthermore, xanthophyll cycling seems more important than antioxidants. Finally, it can be hypothesized that glutathione could function as a stress sensor and response regulator.  相似文献   

17.
The activities of superoxide dismutase, ascorbate peroxidase, monodehydroascorbate radical reductase, and dehydroascorbate reductase and the contents of ascorbate, chlorophyll and soluble protein were determined in beech (Fagus sylvatica, L.) foliage over two or three seasons. Four important stages of leaf development were distinguished: resting buds, emerging, mature and senescent leaves. Foliar buds in spring, prior to the emergence of new leaves, contained a lower chlorophyll content but a higher protein content and higher activities of ascorbate peroxidase and monodehydroascorbate radical reductase than mature leaves in summer. By contrast, superoxide dismutase and glutathione reductase activities and ascorbate contents were higher in mature leaves than in swollen foliar buds. Dehydroascorbate reductase activity was low in all developmental stages. Resting buds in winter contained activities of superoxide dismutase, ascorbate peroxidase and monodehydroascorbate radical reductase that were similar to those found in mature leaves in summer, whereas the contents of total and reduced ascorbate were 6- and 20-times lower, respectively, in buds than in mature leaves. The low foliar concentration of reduced ascorbate in resting buds, despite high monodehydroascorbate radical reductase activity, suggests that the regeneration of ascorbate might be limited by the availability of reductant. High antioxidative capacity was conferred by mature beech leaves and may be an important protection measure for coping with the large fluctuations in temperature and exposure to elevated ozone concentrations in summer.  相似文献   

18.
Six‐carbon (C6) volatile products are released from the enzymatic action of hydroperoxide lyase (HPL), a component of the lipoxygenase (LOX) pathway and form the basis of the "green‐note" flavour characteristic of many consumed plant products. Arabidopsis leaf tissue contains the C6‐aldehydes hexanal, and trans ‐2‐hexenal as well as the C6‐alcohols: hexanol, and 3‐hexenol. Interconversion between C6‐aldehydes and alcohols is thought to proceed through the action of alcohol dehydrogenase (ADH). Using an ADH mutant of Arabidopsis , we have shown that there are large quantitative and qualitative differences in the accumulation of C6‐volatiles in the absence of ADH activity. The total quantity of LOX‐derived volatiles is greater on a fresh weight basis in the ADH mutant. Qualitatively, hexanol and 3‐hexenol levels are approximately 62% and 51% lower in the mutant, respectively, whereas levels of hexenal are approximately 10‐fold higher. Hexanal accumulation, however, is unaffected in the mutant. The altered profile of LOX‐derived volatiles does not have an effect on the steady‐state levels of mRNA for allene oxide synthase (AOS) or LOX. HPL activity and mRNA quantity, however, are higher in the mutant relative to wild type, suggesting that altered product levels in the mutant affect HPL regulation.  相似文献   

19.
20.
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号