首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode Caenorhabditis elegans offers unique experimental advantages for defining the molecular basis of anion channel function and regulation. However, the relative inaccessibility of somatic cells in adult animals greatly limits direct electrophysiological studies of channel activity. We developed methods to routinely isolate and patch clamp C. elegans embryo cells and oocytes and to culture and patch clamp neurons and muscle cells. Dissociated embryonic cells express a robust outwardly rectifying anion current that is activated by membrane stretch and depolarization. This current, termed I(Cl,mec), is inhibited by anion and mechanosensitive channel inhibitors. I(Cl,mec) has broad anion selectivity and the channel has a unitary conductance of 5-7 picosiemens. I(Cl,mec) is not detectable in whole-cell or isolated patch recordings from oocytes, cultured muscle cells, and cultured neurons but is expressed in single cell and later embryos. Channel density is high, and the current is observed in >80% of membrane patches. Macroscopic currents of 40-120 pA at +100 mV are typically observed in inside-out membrane patches formed using low resistance patch pipettes. Isolated membrane patches of early embryonic cells therefore contain 60-200 I(Cl,mec) channels. The apparent activation of I(Cl,mec) shortly after fertilization and its down-regulation in terminally differentiated cells suggests that the channel may play important roles in embryogenesis and/or cytokinesis.  相似文献   

2.
Summary Single anion-selective channels have been studied in cultured human epithelial cells using the patch-clamp technique. Three cell types were used as models for different anion transport systems: (i) PANC-1, a cell line derived from the pancreatic duct, (ii) T84, a Cl-secreting colonic cell line, and (iii) primary cultures of sweat duct epithelium. Outwardly rectifying anion-selective channels were observed in all three preparations and were indistinguishable with respect to conductance, selectivity and gating. Striking similarities between HCO3- and Cl-secreting epithelia, and the high density of outward rectifiers in pancreatic cells prompted us to study HCO3 permeation through this channels. HCO3 permeability was significant when channels were bathed in symmetrical 150mm HCO3 solutions, Cl–HCO3 mixtures, and under bi-ionic conditions with outwardly and inwardly directed HCO3 gradients. Permeability ratios (P HCO3/P Cl) estimated from bi-ionic reversal potentials ranged from 0.50 to 0.64, although conductance ratios greater than 1.2 were observed with high extracellular pH. Chloride did not inhibit HCO3 permeation noticeably but rather had a small stimulatory effect when present on the opposite side of the membrane. The prevalence of outward rectifiers in PANC-1 and their permeability to bicarbonate suggests the channel may have a dual role in HCO3 secretion; to allow Cl recycling at the apical membrane and to mediate some of the HCO3 flux. Defective modulation of this channel in cystic fibrosis might provide a common basis for dysfunction in epithelia having very different anion transport properties (e.g., HCO3 secretion, Cl secretion and Cl absorption).  相似文献   

3.
Summary The effect of pH buffers and related compounds on the conductance of an outwardly rectifying anion channel has been studies using the patch-clamp technique. Single-channel current-voltage relationships were determined in solutions buffered by trace amounts of bicarbonate and in solutions containing N-substituted taurines (HEPES, MES, BES, TES) and glycines (glycylglycine, bicine and tricine), Tris andbis-Tris at millimolar concentrations. HEPES (pKa=7.55) reduced the conductance of the channel when present on either side of the membrane. Significant inhibition was observed with 0.6mm HEPES on the cytoplasmic side (HEPES i ) and this effect increased with [HEPES i ] so that conductance at the reversal potential was diminished 25% with 10mm HEPES i )and 70% at very high [HEPES i ]. HEPES i block was relieved by applying positive voltage but positive currents were not consistent with a Woodhulltype blocking scheme in that calculated dissociation constants and electrical distances depended on HEPES concentration. Results obtained by varying total HEPES i concentration at constant [HEPES] and vice versa suggest both the anionic and zwitterionic (protonated) forms of HEPES inhibit. Structure-activity studies with related compounds indicate the sulfonate group and heterocyclic aliphatic groups are both required for inhibition from the cytoplasmic side. TES (pKa=7.54), substituted glycine buffers (pKa=8.1–8.4) andbis-Tris (pKa=6.46) had no measurable effect on conductance and appear suitable for use with this channel.  相似文献   

4.
Extracellular acidic pH was found to induce an outwardly rectifying Cl- current (I(Cl,acid)) in mouse ventricular cells, with a half-maximal activation at pH 5.9. The current showed the permeability sequence for anions to be SCN- > Br- > I- > Cl- > F- > aspartate, while it exhibited a time-dependent activation at large positive potentials. Similar currents were also observed in mouse atrial cells and in atrial and ventricular cells from guinea pig. Some Cl- channel blockers (DIDS, niflumic acid, and glibenclamide) inhibited ICl,acid, whereas tamoxifen had little effect on it. Unlike volume-regulated Cl- current (ICl,vol) and CFTR Cl- current (ICl,CFTR), ICl,acid was independent of the presence of intracellular ATP. Activation of ICl,acid appeared to be also independent of intracellular Ca2+ and G protein. ICl,acid and ICl,vol could develop in an additive fashion in acidic hypotonic solutions. Isoprenaline-induced ICl,CFTR was inhibited by acidification in a pH-dependent manner in guinea pig ventricular cells. Our results support the view that ICl,acid and ICl,vol stem from two distinct populations of anion channels and that the ICl,acid channels are present in cardiac cells. ICl,acid may play a role in the control of action potential duration or cell volume under pathological conditions, such as ischemia-related cardiac acidosis.  相似文献   

5.
The volume-sensitive outwardly rectifying (VSOR) anion channel provides a major pathway for anion transport during cell volume regulation. It is typically activated in response to cell swelling, but how the channel senses the swelling remains unclear. Meanwhile, we recently found that in mouse astrocytes the channel is activated by an inflammatory chemical mediator, bradykinin, without cell swelling and that the activation is regulated via high concentration regions of intracellular Ca(2+) ([Ca(2+)](i)) in the immediate vicinity of open Ca(2+)-permeable channels, so-called Ca(2+) nanodomains. Here we investigated whether a similar mechanism is involved in the swelling-induced VSOR channel activation in the astrocytes. A hypotonic stimulus (25% reduction in osmolality) caused the [Ca(2+)](i) rises in the astrocytes, and the rises were abolished in the presence of an ATP-degrading enzyme, apyrase (10 U/ml). Application of ATP (100 μM) under isotonic conditions generated the current through VSOR channels via Ca(2+) nanodomains, as bradykinin does. The current induced by the hypotonic stimulus was suppressed by ~40% in the Ca(2+)-depleted condition where the ATP-induced VSOR current was totally prevented. Thus the swelling-induced VSOR channel activation in mouse astrocytes is partly regulated via Ca(2+) nanodomains, whose generation is triggered by an autocrine action of ATP.  相似文献   

6.
7.
We tested the possible role of endogenous protein kinase C (PKC) in the regulation of native volume-sensitive organic osmolyte and anion channels (VSOACs) in acutely dispersed canine pulmonary artery smooth muscle cells (PASMC). Hypotonic cell swelling activated native volume-regulated Cl(-) currents (I(Cl.vol)) which could be reversed by exposure to phorbol 12,13-dibutyrate (0.1 microM) or by hypertonic cell shrinkage. Under isotonic conditions, calphostin C (0.1 microM) or Ro-31-8425 (0.1 microM), inhibitors of both conventional and novel PKC isozymes, significantly activated I(Cl.vol) and prevented further modulation by subsequent hypotonic cell swelling. Bisindolylmaleimide (0.1 microM), a selective conventional PKC inhibitor, was without effect. Dialyzing acutely dispersed and cultured PASMC with epsilon V1-2 (10 microM), a translocation inhibitory peptide derived from the V1 region of epsilon PKC, activated I(Cl.vol) under isotonic conditions and prevented further modulation by cell volume changes. Dialyzing PASMC with beta C2-2 (10 microM), a translocation inhibitory peptide derived from the C2 region of beta PKC, had no detectable effect. Immunohistochemistry in cultured canine PASMC verified that hypotonic cell swelling is accompanied by translocation of epsilon PKC from the vicinity of the membrane to cytoplasmic and perinuclear locations. These data suggest that membrane-bound epsilon PKC controls the activation state of native VSOACs in canine PASMC under isotonic and anisotonic conditions.  相似文献   

8.
Cell swelling activates an outwardly rectifying anion current in numerous mammalian cell types. An extensive body of evidence indicates that the channel responsible for this current is the major pathway for volume regulatory organic osmolyte loss. Cell swelling also activates an outwardly rectifying anion current in Xenopus oocytes. Unlike mammalian cells, oocytes allow the direct study of both swelling-activated anion current and organic osmolyte efflux under nearly identical experimental conditions. We therefore exploited the unique properties of oocytes in order to examine further the relationship between anion channel activity and swelling-activated organic osmolyte transport. Swelling-activated anion current and organic osmolyte efflux were studied in parallel in batches of oocytes obtained from single frogs. The magnitude of swelling-activated anion current and organic osmolyte efflux exhibited a positive linear correlation. In addition, the two processes had similar pharmacological characteristics and activation, rundown and reactivation kinetics. The present study provides further strong support for the concept that the channel responsible for swelling-activated Cl efflux and the outwardly rectifying anion conductance is also the major pathway by which organic osmolytes are lost from vertebrate cells during regulatory volume decrease. Received: 22 April 1996/Revised: 18 December 1996  相似文献   

9.
This report describes a hitherto unreported anionic background current from human atrial cardiomyocytes. Under whole-cell patch-clamp with anion-selective conditions, an outwardly rectifying anion current (I(ANION)) was observed, which was larger with iodide than nitrate, and with nitrate than chloride as charge carrier. In contrast with a previously identified background anionic current from small mammal cardiomyocytes, I(ANION) was not augmented by the pyrethroid tefluthrin (10 microM); neither was it inhibited by hyperosmolar external solution nor by DIDS (200 microM); thus I(ANION) was not due to basal activity of volume-sensitive anion channels. I(ANION) was partially inhibited by the Cl(-) channel blockers NPPB (50 microM) and Gly H-101 (30 microM). Incorporation of I(ANION) into a human atrial action potential (AP) simulation led to depression of the AP plateau, accompanied by alterations to plateau inward calcium current, and to AP shortening at 50% but not 90% of complete repolarization, demonstrating that I(ANION) can influence the human atrial AP profile.  相似文献   

10.
Octopamine (OA) plays an important role in the regulation of a number of key processes in nematodes, including pharyngeal pumping, locomotion and egg-laying. However, while putative OA receptors can be tentatively identified in the Caenorhabditis elegans database, no OA receptors have been functionally characterized from any nematode. We have isolated two cDNAs, ser-2 and ser-2a, encoding putative C.elegans serotonin/OA receptors (C02D4.2, ser-2). The sequences of these cDNAs differ from that predicted by GeneFinder and lack 42 bp of exon 2. In addition, ser-2a appears to be alternatively spliced and lacks a predicted 23 amino acids in the third intracellular loop. COS-7 cells expressing SER-2 bind [3H]LSD in the low nM range and exhibit Kis for tyramine, octopamine and serotonin of 0.07, 2, and 13.7 micro m, respectively. Significantly, tyramine reduces forskolin-stimulated cAMP levels in HEK293 cells stably expressing SER-2 with an IC50 of about 360 nm, suggesting that SER-2 is a tyramine receptor.  相似文献   

11.
Hyaluronidases have been postulated to be the enzyme acting at the initial step of chondroitin sulfate (CS) catabolism in vivo. Since chondroitin (Chn) but not hyaluronic acid (HA) has been detected in Caenorhabditis elegans, the nematode is a good model for elucidating the mechanism of the degradation of CS/Chn in vivo. Here we cloned the homolog of human hyaluronidase in C. elegans, T22C8.2. The Chn-degrading activity in vitro was first demonstrated when it was expressed in COS-7 cells. The enzyme cleaved preferentially Chn. CS-A and CS-C were also depolymerized but to lesser extents, and HA was hardly degraded. In order of preference, the substrates ranked Chn > CS-A > CS-C > HA. The products of the degradation of Chn by the enzyme were characterized by anion-exchange high performance liquid chromatography and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The structure of the major component in the digest was determined as GlcUAbeta1-3GalNAcbeta1-4GlcUAbeta1-3GalNAc, where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively, indicating that this enzyme is a Chn hydrolase, an endo-beta-galactosaminidase specific for Chn. Investigation of the effects of pH on the activity revealed the optimum pH of Chn hydrolase to be 6.0. Since Chn in C. elegans has been demonstrated to play critical roles in cell division, Chn hydrolase possibly regulates the function of Chn in vivo. This is the first demonstration of a Chn hydrolase in an animal.  相似文献   

12.
We have previously identified two G protein-linked acetylcholine receptors (GARs), GAR-1 and GAR-3, in the nematode Caenorhabditis elegans. Whereas GAR-3 is a homologue of muscarinic acetylcholine receptors (mAChRs), GAR-1 is similar to but pharmacologically distinct from mAChRs. In the current work we isolated a new type of GAR using C. elegans genome sequence information. This receptor, named GAR-2, consists of 614 amino acid residues and has seven putative transmembrane domains. Database searches indicate that GAR-2 is most similar to GAR-1 and closely related to GAR-3/mAChRs. The overall amino acid sequence identities to GAR-1 and GAR-3 are approximately 32 and approximately 23%, respectively. When GAR-2 was coexpressed with the G protein-activated inwardly rectifying K(+) (GIRK1) channel in XENOPUS: oocytes, acetylcholine was able to evoke the GIRK current in a dose-dependent fashion. Oxotremorine, a classical muscarinic agonist, had little effect on the receptor, indicating that GAR-2 is pharmacologically different from mAChRs but rather similar to GAR-1. GAR-2 differs from GAR-1, however, in that it showed virtually no response to muscarinic antagonists such as atropine, scopolamine, and pirenzepine. Expression studies using green fluorescent protein reporter gene fusion revealed that GAR-2 is expressed in a subset of C. elegans neurons, distinct from those expressing GAR-1. Together with our previous reports, this study demonstrates that diverse types of GARs are present in C. elegans.  相似文献   

13.
Outwardly rectified, swelling-activated anion conductances have been described in numerous cell types. The major functional variable observed amongst these conductances is the extent and rate of depolarization-induced inactivation. In general, the conductances can be divided into two broad classes, those that show rapid inactivation in response to strong depolarization and those that show little or no voltage dependence. The swelling-activated anion conductance in rat C6 glioma cells is inactivated nearly completely by membrane depolarization above +90 mV and reactivated by membrane hyperpolarization. The kinetics of inactivation and reactivation are fit by single and double exponentials, respectively. Voltage-dependent behavior is well described by a simple linear kinetic model in which the channel exists in an open or one of three inactivated states. pH- induced changes in voltage-dependent gating suggest that the voltage sensor contains critical basic amino acid residues. Extracellular ATP blocks the channel in a voltage-dependent manner. The block is sensitive to the direction of net Cl- movement and increases open channel noise indicating that ATP interacts with the channel pore. Blockage of the channel with ATP dramatically slows depolarization- induced inactivation.  相似文献   

14.
The nematode Caenorhabditis elegans is widely used as a model organism to study cell and developmental biology. Quantitative proteomics of C. elegans is still in its infancy and, so far, most studies have been performed on adult worm samples. Here, we used quantitative mass spectrometry to characterize protein level changes across the four larval developmental stages (L1–L4) of C. elegans. In total, we identified 4130 proteins, and quantified 1541 proteins that were present across all four stages in three biological replicates from independent experiments. Using hierarchical clustering and functional ontological analyses, we identified 21 clusters containing proteins with similar protein profiles across the four stages, and highlighted the most overrepresented biological functions in each of these protein clusters. In addition, we used the dataset to identify putative larval stage‐specific proteins in each individual developmental stage, as well as in the early and late developmental stages. In summary, this dataset provides system‐wide analysis of protein level changes across the four C. elegans larval developmental stages, which serves as a useful resource for the C. elegans research community. MS data were deposited in ProteomeXchange ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the primary accession identifier PXD006676.  相似文献   

15.
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl channels, however the nature of these Cl channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl current at extracellular pH 7.4. This constitutive Cl current was more permeable to larger anions (Eisenman sequence I; I > Br  Cl) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl current was blocked by NPPB, along with other Cl channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl current. This acid-induced Cl current was also anion permeable (I > Br > Cl), but was distinguished from the constitutive Cl current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl currents are unique and provide the mechanisms to account for the Cl efflux previously speculated to be present in MDCT cells.  相似文献   

16.
The lines of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild line N2 by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these lines are new genetic variants that emerged during the experiment. The worms of lines HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5 degrees C), thermostability of locomotion at 36 degrees C, and survival at 37 degrees C as compared with the line N2. The results have demonstrated that adaptation of C. elegans to high temperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.  相似文献   

17.
Voltage clamp technique was used to study macroscopic ionic currents in Rana esculenta oocytes. Depolarization steps led to the activation of a single type of outward current (I out) when contaminant potassium and calcium-dependent chloride currents were pharmacologically inhibited. The voltage threshold of I out activation was 10 mV and this current, which did not inactivate, presented a deactivation the time constant of 73±21 msec (n=26) corresponding to a membrane voltage of –60 mV. Its reversal potential (E rev) was dependent on the magnitude of the depolarization and also on pulse duration. These changes in E rev were thought to reflect intracellular ion depletion occurring during activation of the remaining outward current. Furthermore, the activation threshold of I out was clearly affected by modifications in extracellular and intracellular H+ concentrations. Indeed, intracellular alkalinization (evoked by external application of ammonium chloride) or extracellular acidification induced a rightward shift in the activation threshold while intracellular acidification (evoked by external application of sodium acetate) or extracellular alkalinization shifted this threshold toward a more negative value. Lastly, I out was dramatically reduced by divalent cations such as Cd2+, Ni2+ or Zn2+ and was strongly decreased by 4 Aminopyridine (4-AP), wellknown H+ current antagonists already described in many cell types. Therefore, it was suggested that the outward current was prominently carried by H+ ions, which may play a key role in the regulation of intracellular pH and subsequent pH dependent processes in Rana oocyte.  相似文献   

18.
19.
20.
TFG was discovered as a fusion partner of NTRK1 in human papillary thyroid carcinoma. We assembled the mouse TFG cDNA from EST sequences and 5' end RACE product, identified full coding length TFG EST clones in pig (c17b07) and Schistosoma mansoni (SMNAS62), and analyzed the genomic structure of TFG in Caenorhabditis elegans (Y63D3A). The protein sequences of mouse, pig, and S. mansoni TFG are highly homologous to human TFG. The C. elegans sequence has diverged, but its predicted secondary structure is remarkably conserved. Human, mouse, and C. elegans TFG contain a putative trimeric N-terminal coiled-coil domain, glycosylation, myristylation, and phosphorylation sites, and SH2- and SH3-binding motifs. The SH2-binding motif is absent in C. elegans TFG. The expression of TFG does not vary among 7, 11, 15, and 19 day mouse embryonal stages. In situ hybridization with a TFG probe in 10, 5-day whole mouse embryos showed preferential staining of the limb buds, branchial arches, nasal processes, and brain, and weak staining of the primitive spinal cord and dorsal root ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号