首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mg(2+) competitively inhibits spermine transport in energized rat liver mitochondria (RLM) and exhibits a K(i) of 0.1mM on the initial rate and an I(50) of 0.6mM on total spermine accumulation after 20 min. Addition of 2mM Mg(2+) after spermine accumulation induces release of the polyamine. In view of the fact that spermine cycles across the inner membrane under physiological conditions, these results demonstrate that Mg(2+) inhibits spermine influx but does not affect the efflux pathway of the polyamine; the inhibitory effect occurs via an interaction with the specific site responsible for spermine transport. Instead, spermine inhibits Mg(2+) binding without affecting the rate of Mg(2+) transport, suggesting that both cations bind to the same site, which, however, is not used for Mg(2+) transport. Spermine also inhibits Mg(2+) efflux from RLM induced under conditions of the "low conductance state," a preliminary step preceding permeability transition pore opening.  相似文献   

3.
The energy-dependent exchange of intracellular Mg(2+) with extracellular Mg(2+) or Co(2+) is inhibited by colicin E1 and, less strongly, by colicin K. Treatment with either colicin causes a net loss of intracellular Mg(2+). This loss begins immediately in cells treated with colicin E1, but in colicin K-treated cells the onset of Mg(2+) loss is delayed 1 to 10 min, depending upon the temperature and the multiplicity of colicin K. Both colicins differ from chemical inhibitors of energy-yielding metabolism; energy poisons block transport of Mg(2+) and Co(2+), but both colicins increase passive permeability to Mg(2+) and Co(2+). Inhibitors of energy-yielding metabolism (and of Mg(2+) exchange) block the initiation of Mg(2+) loss by either colicin, but do not stop colicin-promoted efflux once it has begun. Colicin E1 added before colicin K prevents the more rapid Mg(2+) efflux characteristic of colicin K-treated cells. Quantitative comparisons of the effects of colicins E1 and K upon permeability to Mg(2+) and Co(2+) lead us to conclude that the two colicins are not identical in their mode of action.  相似文献   

4.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

5.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

6.
We examined glutamate-mediated neurotoxicity in cortical cell cultures pretreated with 1-5 micrograms/ml tetanus toxin to attenuate the Ca(2+)-dependent release of neurotransmitters. Efficacy of the tetanus toxin pretreatment was suggested by blockade of electrical burst activity induced by Mg2+ removal and by reduction of glutamate efflux induced by high K+. Tetanus toxin reduced neuronal injury produced by brief exposure to elevated extracellular K+ or to glutamate, situations in which release of endogenous excitatory neurotransmitter is likely to play a role. Furthermore, although glutamate efflux evoked by anoxic conditions may occur largely via Ca(2+)-independent transport, tetanus toxin attenuated both glutamate efflux and neuronal injury following combined oxygen and glucose deprivation. With prolonged exposure periods, the neuroprotective efficacy of tetanus toxin was comparable to that of NMDA receptor antagonists. Presynaptic inhibition of Ca(2+)-dependent glutamate release may be a valuable approach to attenuating hypoxic-ischemic brain injury.  相似文献   

7.
An absolute requirement for divalent cations is reported for H(14)CO(3) (-) influx in Chara corallina. Effective substitution of eluted Ca(2+) by Mg(2+) and Sr(2+) was observed, but Mn(2+) was completely ineffective in restoring H(14)CO(3) (-) transport activity. Similarly, La(3+) could not substitute for Ca(2+) in this system. Low concentrations of ethylenediaminetetraacetate (0.01 to 0.06 mm) significantly enhanced the rate at which H(14)CO(3) (-) transport capacity was lost.Examination of the response of OH(-) efflux, during Ca(2+)-free treatment, indicated that the cellular control over OH(-) efflux remained unaffected until membrane integrity became severely affected. This conclusion was supported by the response of OH(-) efflux to 10 mm K(+). Therefore, assimilation of H(14)CO(3) (-) is not rate-limited by an effect of Ca(2+) elution on the OH(-) transport system. Kinetic experiments indicated that Ca(2+) removal from the membrane resulted in noncompetitive inhibition of H(14)CO(3) (-) assimilation; the apparent Michaelis constant remained unaltered over a wide range of conditions. An hypothesis is presented which suggests that membrane integrity is necessary for HCO(3) (-) transport to occur, but Ca(2+) (Mg(2+), Sr(2+)), per se, must be bound to the transport complex before activity is established.  相似文献   

8.
In the present work we reported the results of the study of erythrocyte membrane Na+,K(+)-adenosine triphosphatase (ATPase) and Mg(2+)-ATPase in patients with essential hypertension and controls. In the 40 patients with hypertension, a more marked decrease of Na+, K(+)-ATPase was observed. The behavior of the enzyme at Mg2+ activation, ouabain inhibition and the response to different temperature suggest the possibility of differences between the two groups. The normal erythrocyte Mg(2+)-ATPase activity in two groups suggest also the possible role of ratio Na+, K(+)-ATPase/Mg(2+)-ATPase in the study of essential hypertension. However the relevance of magnesium and Mg(2+)-ATPase to the pathogenesis of essential hypertension remains unclear but merits further study. On the basis of these considerations the aim of the present study was to identify, in a kinetic approach, the presence of different abnormalities of Na+ transport and Na+, K(+)-ATPase in erythrocytes from patients with essential hypertension. Much evidence has supported the hypothesis that essential hypertension is a heterogeneous disease in the pathophysiological mechanisms as well as in its clinical and therapeutical consideration.  相似文献   

9.
1. Membranes prepared from human erythrocytes hemolyzed in isosmotic (310 imosM) imidazole buffer, pH 7.4, show enhanced and stabilized (Ca2+ + Mg2+)-ATPase activity compared with membranes prepared from erythrocytes hemolyzed in hypotonic (20 imosM) phosphate or imidazole buffer, pH 7.4. 2. Exposure of intact erythrocytes or well-washed erythrocyte membranes to isosmotic imidazole does not cause enhanced (Ca2+ + Mg2+)-ATPase activity. 3. Exposure of erythrocyte membranes, in the presence of isosmotic imidazole, to the supernatant of erythrocyte hemolysis or to a partially purified endogenous (Ca2+ + Mg2+)-ATPase activator, promotes enhanced (Ca2+ + Mg2+)-ATPase activity. Under appropriate conditions, NaCl can be shown to substitute for imidazole. The results demonstrate that imidazole does not act directly on the erythrocyte membrane but rather by promoting interaction between an endogenous (Ca2+ + Mg2+)-ATPase activator and the erythrocyte membrane.  相似文献   

10.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1-1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5-10mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ plus Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ plus Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

11.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

12.
Total hepatic Mg(2+) content decreases by >25% in animals maintained for 2 weeks on Mg(2+) deficient diet, and results in a >25% increase in glucose 6-phosphatase (G6Pase) activity in isolated liver microsomes in the absence of significant changed in enzyme expression. Incubation of Mg(2+)-deficient microsomes in the presence of 1mM external Mg(2+) returned G6Pase activity to levels measured in microsomes from animals on normal Mg(2+) diet. EDTA addition dynamically reversed the Mg(2+) effect. The effect of Mg(2+) or EDTA persisted in taurocholic acid permeabilized microsomes. An increase in G6Pase activity was also observed in liver microsomes from rats starved overnight, which presented a ~15% decrease in hepatic Mg(2+) content. In this model, G6Pase activity increased to a lesser extent than in Mg(2+)-deficient microsomes, but it could still be dynamically modulated by addition of Mg(2+) or EDTA. Our results indicate that (1) hepatic Mg(2+) content rapidly decreases following starvation or exposure to deficient diet, and (2) the loss of Mg(2+) stimulates G6P transport and hydrolysis as a possible compensatory mechanism to enhance intrahepatic glucose availability. The Mg(2+) effect appears to take place at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment.  相似文献   

13.
Magnesium (Mg(2+)), the second most abundant divalent intracellular cation, is involved in the vast majority of intracellular processes, including the synthesis of nucleic acids, proteins, and energy metabolism. The concentration of intracellular free Mg(2+) ([Mg(2+)](i)) in mammalian cells is therefore tightly regulated to its optimum, mainly by an exchange of intracellular Mg(2+) for extracellular Na(+). Despite the importance of this process for cellular Mg(2+) homeostasis, the gene(s) encoding for the functional Na(+)/Mg(2+) exchanger is (are) still unknown. Here, using the fluorescent probe mag-fura 2 to measure [Mg(2+)](i) changes, we examine Mg(2+) extrusion from hSLC41A1-overexpressing human embryonic kidney (HEK)-293 cells. A three- to fourfold elevation of [Mg(2+)](i) was accompanied by a five- to ninefold increase of Mg(2+) efflux. The latter was strictly dependent on extracellular Na(+) and reduced by 91% after complete replacement of Na(+) with N-methyl-d-glucamine. Imipramine and quinidine, known unspecific Na(+)/Mg(2+) exchanger inhibitors, led to a strong 88% to 100% inhibition of hSLC41A1-related Mg(2+) extrusion. In addition, our data show regulation of the transport activity via phosphorylation by cAMP-dependent protein kinase A. As these are the typical characteristics of a Na(+)/Mg(2+) exchanger, we conclude that the human SLC41A1 gene encodes for the Na(+)/Mg(2+) exchanger, the predominant Mg(2+) efflux system. Based on this finding, the analysis of Na(+)/Mg(2+) exchanger regulation and its involvement in the pathogenesis of diseases such as Parkinson's disease and hypertension at the molecular level should now be possible.  相似文献   

14.
SLC41A1 is a novel mammalian Mg2+ carrier   总被引:1,自引:0,他引:1  
The molecular biology of mammalian magnesium transporters and their interrelations in cellular magnesium homeostasis are largely unknown. Recently, the mouse SLC41A1 protein was suggested to be a candidate magnesium transporter with channel-like properties when overexpressed in Xenopus laevis oocytes. Here, we demonstrate that human SLC41A1 overexpressed in HEK293 cells forms protein complexes and locates to the plasma membrane without, however, giving rise to any detectable magnesium currents during whole cell patch clamp experiments. Nevertheless, in a strain of Salmonella enterica exhibiting disruption of all three distinct magnesium transport systems (CorA, MgtA, and MgtB), overexpression of human SLC41A1 functionally substitutes these transporters and restores the growth of the mutant bacteria at magnesium concentrations otherwise non-permissive for growth. Thus, we have identified human SLC41A1 as being a bona fide magnesium transporter. Most importantly, overexpressed SLC41A1 provide HEK293 cells with an increased magnesium efflux capacity. With outwardly directed Mg(2+) gradients, a SLC41A1-dependent reduction of the free intracellular magnesium concentration accompanied by a significant net decrease of the total cellular magnesium concentration could be observed in such cells. SLC41A1 activity is temperature-sensitive but not sensitive to the only known magnesium channel blocker, cobalt(III) hexaammine. Taken together, these data functionally identify SLC41A1 as a mammalian carrier mediating magnesium efflux.  相似文献   

15.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

16.
An effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential (DeltaPsi(m)) was investigated. Depending on the presence of Mg(2+), addition of Ca(2+) to suspension of isolated rat heart mitochondria induced either reversible depolarisation or irreversible collapse of succinate-driven DeltaPsi(m). Irreversible collapse of DeltaPsi(m), observed in the absence of Mg(2+), was insensitive to Ca(2+) chelation, inhibition of Ca(2+) uptake and increased efflux of Ca(2+) from mitochondrial matrix. Based on these data, opening of mPTP in a high-conductance mode is considered to be a major cause of the Ca(2+)-induced irreversible collapse of DeltaPsi(m) in the absence of Mg(2+). Involvement of mPTP in the process of Ca(2+)-induced collapse of DeltaPsi(m) was further supported by protective effect of both CsA and ADP. Reversible collapse of DeltaPsi(m), observed in the presence of Mg(2+), was sensitive to EGTA, ADP; and inhibition of Ca(2+) uptake and increased efflux of Ca(2+) from mitochondrial matrix. This may represent selective induction of a low-conductance permeability pathway. Presented results indicate important role of Mg(2+) in the process of Ca(2+)-induced depolarisation of DeltaPsi(m) mainly through discrimination between low- and high-conductance modes of mPTP. Minor effect of Mg(2+) on Ca(2+)-induced depolarisation of DeltaPsi(m) was observed at the level of stimulation of DeltaPsi(m) generation and inhibition of mitochondrial Ca(2+) uptake.  相似文献   

17.
The effect of magnesium on the energy metabolism of Ehrlich ascites tumour cells was investigated using a method which allows to change the cellular content of magnesium rapidly at constant low calcium concentration. Cells, which have lost some of their magnesium, accumulate lactate slightly faster than non-treated cells. Mg-loading of these cells decreases the glycolytic flux rates to about 20% under aerobic and anaerobic conditions. The corresponding changes of some glycolytic metabolites suggest an inhibition of the HK-PFK-system. A similar inhibitory effect of Mg on O2-consumption in the absence and presence of glucose to about 20% and 15%, respectively, was observed. Despite the inhibition of the ATP-generating systems the ATP concentration increases under all conditions investigated, indicating an inhibition of ATP consuming systems. From experiments in the presence of ouabain, which inhibits the aerobic glycolysis to about 40% and 20%, in Mg-depleted and Mg-loaded cells, respectively, it is concluded that magnesium affects the active monovalent cation transport. Removal of magnesium increases the activity of the (Na+-K+)-ATPase and vice versa, presumably via changes of the cell membrane permeability.  相似文献   

18.
Non-Mg(2+)-loaded rat erythrocytes with a physiological level of Mg(2+)(i) exhibited Mg(2+) efflux when incubated in nominally Mg(2+)-free media. Two types of Mg(2+) efflux were shown: (1) An Na(+)-dependent Mg(2+) efflux in NaCl and Na gluconate medium, which was inhibited by amiloride and quinidine, as was Na(2+)/Mg(2+) antiport in Mg(2+)-loaded rat erythrocytes; and (2) an Na(+)-independent Mg(2+) efflux in sucrose medium and choline Cl medium, which may be differentiated into SITS-sensitive Mg(2+) efflux at low Cl(-)(o) (in sucrose) and into SITS-insensitive Mg(2+) efflux at high Cl(-)(o) (in 150 mmol/l choline Cl).  相似文献   

19.
In skeletal muscle, Mg(2+) exerts a dual inhibitory effect on RyR1, by competing with Ca(2+) at the activation site and binding to a low affinity Ca(2+)/Mg(2+) inhibitory site. Pharmacological activators of RyR1 must overcome the inhibitory action of Mg(2+) before Ca(2+) efflux can occur. In normal muscle, where the free [Mg(2+)](i) is approximately 1mM, even prolonged exposure to millimolar levels of volatile anesthetics does not initiate SR Ca(2+) release. However, when the cytosolic [Mg(2+)] is reduced below the physiological range, low levels of volatile anesthetic within the clinically relevant range (1mM) can initiate SR Ca(2+) release, in the form of a propagating Ca(2+) wave. In human muscle fibers from malignant hyperthermia susceptible patients, such Ca(2+) waves occur when 1mM halothane is applied at physiological [Mg(2+)](i). There is increasing evidence to suggest that defective Mg(2+) regulation of RyR1 confers susceptibility to malignant hyperthermia. At the molecular level, interactions between critical RyR1 subdomains may explain the clustering of RyR1 mutations and associated effects on Mg(2+) regulation.  相似文献   

20.
Bacillus cereus sphingomyelinase (SMase) is an extracellular hemolysin classified into a group of Mg(2+)-dependent neutral SMases (nSMase). Sequence comparison of bacterial and eukaryotic Mg(2+)-dependent nSMases has shown that several amino acid residues, including Glu-53 of B. cereus SMase, are conserved, suggesting a catalytic mechanism common to these enzymes. Mutational analysis has revealed that hemolytic and SM-hydrolyzing activities are abolished by E53A and E53Q mutations. Only the E53D mutant enzyme partially retains these activities, however, a significant decrease in the apparent k(cat)/K(m) for SM hydrolysis is observed by this mutation. Mg(2+) activates the wild-type enzyme in a two-step manner, i.e., at least two binding sites for Mg(2+), high- and low-affinity, are present on the enzyme. The binding affinity of essential Mg(2+) for the high-affinity site is decreased by the mutation. In addition, the binding affinities of Mn(2+) and Co(2+) (substitutes for Mg(2+)) are also decreased. On the contrary, the inhibitory effects of Ca(2+), Cu(2+), and Zn(2+) on SM-hydrolyzing activity are not influenced by the mutation. The results indicate that Glu-53 of B. cereus SMase acts as a ligand for Mg(2+) and is involved in the high-affinity Mg(2+)-binding site, which is independent of the binding site for inhibitory metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号