首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xylem cell length of juvenile tree rings was investigated in poplars in order to check the hypotheses that fiber length or vessel element length are indicative of drought tolerance and have predictive value for final stem base diameter at the end of rotation. The radial increment in the drought year 2003 served as the reference indicator for quantifying drought tolerance. All nine investigated cultivars suffered severely. In terms of their moderately decreased radial increment in 2003, the two aspen cultivars were clearly less drought susceptible than the seven hybrid poplar cultivars. The variance components of xylem cell length data explained by the two genetic factors ‘cultivar’ and ‘botanic section’ as well as the ‘tree ring’ (of the years 2002 and 2003) were compared by means of ANOVAs. The cultivar effects were superior to the effects of the critical precipitation status in 2003 and the botanic section. Fiber and vessel element length were found to be less sensitive to the drought compared with radial increment. They did neither correlate with radial increment in the drought year 2003 nor in 2002. Therefore, higher xylem cell length cannot indicate drought tolerance in poplars. However, a linear relationship between fiber length of both juvenile tree rings and the stem base diameter proved to be highly significant to a linear mixed effect model. Higher fiber length of a juvenile tree ring was considered to be predictive of larger stem base diameter at the end of rotation.  相似文献   

2.
We investigated long-term responses (since 1850) of Fagus sylvatica (Luxembourg; central Europe) to shifts in temperature, precipitation, and nitrogen deposition by analyzing diameter at breast height (DBH) increment, basal area increment (BAI), and tree-ring stable isotopes (δ13C, δ15N). We compared stands on soils with contrasting water supply (Regosols and Cambisols with an available water capacity of ca. 40 and 170 mm, respectively) and of two different age classes (ca. 60 vs. 200 years). All stands showed a peak in DBH increment in the decade 1978–1987, but a decline in increment growth in subsequent decades. In addition, BAI declined in mature stands in the last two decades. Decreasing increment rates were attributable to an increasing drought limitation of stands, mainly induced by increasing temperatures in the last two decades. Contrary to our expectations, stands on Cambisols showed a similar susceptibility to shifts in temperature and precipitation as stands on Regosols, suggesting a strong adaptation of the respective ecotypes grown at dryer sites. This result was in line with long-term trends for tree-ring δ13C signatures, which did not differ significantly between stands on Cambisols and Regosols. Climate impacts on tree-ring δ15N signatures were low. High spring precipitation and temperatures caused increasing and decreasing δ15N values, respectively, but only in mature stands on Cambisols. Stands on Regosols tended to have lower δ15N values than stands on Cambisols. Decreasing δ15N values in recent decades suggest an increasing impact of allochthonous N loads with isotopically lighter N.  相似文献   

3.
We determined the stable carbon isotope composition (δ1.3C) of cellulose extracted from early and late wood in Douglas fir [Pseudotsuga menziexii (Mirb.) Franco] tree rings. Data were obtained for the period 1962 to 1981, at the start of which the trees were 20 years old. A water balance model was used to calculate daily stand transpiration and water deficit. The model incorporates site factors (soil water availability, slope and aspect) and environmental variables (solar radiation, air temperature and rainfall). There was far greater variability in late wood than in early wood δ1.3C. In wet years, late wood δ1.3C was significantly lighter (by as much as 2δ) than early wood δ1.3C but in dry years this difference was reversed. Differences between spring and summer cumulative transpiration accounted for almost 60δ of the variability in differences between early and late wood δ1.3C. We found excellent correspondence between summer cumulative transpiration and late wood δ1.3C, with estimates of transpiration accounting for up to 93% of the variability in δ1.3C. Correlations between early wood δ1.3C and spring transpiration were generally poor (r2<0.4), but we were able to identify those exceptional years in which there had been a very dry spring. Our results indicate that, while tree ring δ1.3C correlates reasonably well with basal area increment, it is a far better indicator of inter- and intra-annual variability in water availability than radial growth.  相似文献   

4.
Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological amplitude enabling growth under various soil conditions within its distribution area in Central Europe. We studied the effects of extreme drought on beech saplings (second year) of four climatically distinct provenances growing on different soils (sandy loam and loamy sand) in a full factorial pot experiment. Foliar δ13C, δ15N, C, and N as well as above‐ and belowground growth parameters served as measures for stress level and plant growth. Low‐quality soil enhanced the effect of drought compared with qualitatively better soil for the above‐ and belowground growth parameters, but foliar δ13C values revealed that plant stress was still remarkable in loamy soil. For beeches of one provenance, negative sandy soil effects were clearly smaller than for the others, whereas for another provenance drought effects in sandy soil were sometimes fatal. Foliar δ15N was correlated with plant size during the experiment. Plasticity of beech provenances in their reaction to drought versus control conditions varied clearly. Although a general trend of declining growth under control or drought conditions in sandy soil was found compared to loamy soil, the magnitude of the effect of soil quality was highly provenance specific. Provenances seemed to show adaptations not only to drought but also to soil quality. Accordingly, scientists should integrate information about climatic pre‐adaptation and soil quality within the home range of populations for species distribution modeling and foresters should evaluate soil quality and climatic parameters when choosing donor populations for reforestation projects.  相似文献   

5.
Females of woody dioecious species usually expend more resources on reproduction than males. Therefore, it is expected that females incur greater costs of reproduction than males, and, as a result, trade-offs between reproduction and growth should emerge. The aim of this study is to test those hypotheses by analyzing the differences between genders regarding radial growth (basal area increment) and wood carbon isotope composition (δ13C), a proxy of water-use efficiency. We compared these two variables in males and females of four dioecious tree species inhabiting drought-prone Mediterranean sites in Spain (Pistacia terebinthus, Ilex aquifolium, Juniperus thurifera and Ailanthus altissima). We analyzed the influence of sex on the radial growth patterns throughout the tree life considering the growth stage of individuals, the differences in the response of genders to climate variables (air temperature, precipitation and drought severity), and the δ13C during a severe drought period. One site was studied for each species and 21–33 trees per species were sampled in each site. No differences in growth were found between genders for any of the four species throughout their life span. No significant interactions between gender and precipitation were found, although A. altissima males were more responsive to summer (June-July) temperature. No differences in δ13C were found between genders excepting for P. terebinthus, indicating that the males of this species show a less efficient water use during drought events than the females. These results do not support the broad assumption that females of woody dioecious plants show lower growth and are less water-use efficient than males or that they respond differently to precipitation variability, except for P. terebinthus during drought events. Further analyses could be performed in other dioecious species inhabiting seasonally dry regions to confirm or reject our conclusions.  相似文献   

6.

Key message

Beech trees were able to cope with the drought of 2003. Harmful water shortage has been avoided by an effective stomatal closure while use of carbon storage pools may have prevented carbon starvation and growth reduction.

Abstract

We applied hydrodynamic modeling together with a tree ring stable isotope approach to identify the physiological responses of beech trees to changing environmental conditions. The drought conditions of the extreme hot and dry summer in 2003 were hypothesized to significantly influence the radial growth of European beech mainly triggered by the stomatal response towards water scarcity leading, in turn, to a decline in carbon assimilation. The functional–structural single tree modeling approach applied, revealed in fact a strong limitation of water use and carbon gain during drought. However, tree ring width data did not show a clear drought response and no differentiation in radial growth during six subsequent years examined (2002–2007) has been observed. Using integrated results from mechanistic carbon–water balance simulations, tree ring carbon and oxygen isotope analysis and tree ring width measurements we postulate that the suggested drought-induced growth decline has been prevented by the remobilization of stored carbohydrates, an early onset in growth and the relatively late occurrence of the severe drought in 2003. Furthermore, we demonstrate that the stomatal response played a significant role in avoiding harmful water tension that would have caused xylem dysfunction. As a result of the combined investigation with physiological measurements (stable isotope approach) and hydrodynamic modeling of stomatal aperture, we could give insights into the physiological control of mature beech tree functioning under drought. We conclude that beech trees have been operating at their hydraulic limits and that the longer or repeated drought periods would have affected the growth considerably.
  相似文献   

7.
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.  相似文献   

8.
The stable carbon isotopic composition (δ13C) measured in tree rings is a standard proxy for paleoclimate reconstructions and is increasingly being used as a paleophysiological proxy. To fully exploit the potential of tree ring δ13C proxy, atmospheric CO2 concentration and δ13C (δ13CO2) data are required to correct tree ring δ13C from the declining trend of δ13CO2 due to fossil fuel burning since 1850 CE, and to derive physiological parameters using biochemical models that link photosynthesis to δ13C. These atmospheric data are available from direct measurements or can be inferred from indirect proxies such as ice cores covering the Common Era (CE) at variable temporal resolutions. For almost two decades, tree-ring researchers have relied on a dataset derived from fitted linear regressions of ice core measurements available through the seminal McCarroll and Loader (2004) article for the 1850−2003 CE period. However, new calibrations and compilations of ice core data and direct measurements are now available as part of Earth System Modelling efforts which remain overlooked by the tree ring research community.Here, we present an overview of the new and freely available datasets and provide recommendations for their use in ecophysiology and paleoclimate research, that we expect will stimulate cross-disciplinary collaborations.  相似文献   

9.
The 10-year juvenile records of three hybrid poplar and two aspen cultivars (Populus spp.) from a short rotation coppice (SRC) were assessed by measuring tree-ring width (annual radial increment, ir) and stable isotope ratios of carbon and oxygen (δ13C and δ18O) of α-cellulose. All cultivars showed common ‘juvenile trends’ that were modeled with nonlinear fit (NLF) functions. The ir of all cultivars culminated in the middle of the juvenile phase. Within the first ten years, δ13C showed a gradual decrease of approximately 2.5 ‰ in all cultivars and δ18O showed an asymptotic increase which was variable among the poplar cultivars and which was more pronounced in two hybrid poplars. Potential causes of the juvenile inter-annual variability of δ13C and δ18O were discussed. Likely, the maturation related changes in hydraulic architecture, the canopy closure and the resulting increase of the proportion of shaded crown segments which have lower photosynthetic capacities had an effect on δ13C. An additional effect of changes in N nutrition on δ13C is assumed at the present SRC trial because the NO3 concentration had significantly decreased after ten years. Interpretation of δ18O data remained difficult given the lack of soil water δ18O records.The maturation effect and the respective interaction have resulted in large temporal variability in the present three investigated tree ring traits. However, the impact of two drought vegetation periods (2003 and 2006) was still reflected by the juvenile tree ring records of all traits. Different juvenile trends in the records of the stable isotope ratios δ13C and δ18O, and the trend slopes, which may vary between genetically different cultivars, must be considered in tree ring investigations of SRC poplars.  相似文献   

10.
全球气候变化导致的区域森林生长衰退和死亡普遍发生,并对森林生态系统结构和组成以及主要生态系统服务功能产生重要影响,然而相关研究在国内还显偏少。根据黄土高原延安羊圈沟小流域人工刺槐林健康和衰退个体分别构建了刺槐健康和衰退树轮年表,并对人工刺槐林健康和衰退年表特征及对气候响应敏感性进行了对比分析。结果表明刺槐衰退年表质量较低,其年表统计参量,包括平均敏感度、样芯间相关系数、信噪比和样本群体代表系数均要低于刺槐健康年表。刺槐衰退年表在生活史早期(1985-2007年)与生长健康年表的波动趋势相类似,而在生活史晚期(2008-2016年)与健康年表指数出现生长分离现象,生长速率明显偏低。年表与气候要素响应分析表明刺槐生长衰退年表对气候要素响应敏感性要低于刺槐生长健康年表,但是两者均含有干旱胁迫气候信号,主要体现在与温度呈负相关关系,与降雨和干旱指数的正相关关系。年表与极端气候年份的时序叠加分析表明,生长健康和衰退年表对极端干旱年份响应敏感性均较高,表明极端干旱胁迫条件对刺槐生长健康和衰退个体均有抑制性影响;生长健康年表对极端湿润年份响应敏感性明显高于衰退年表,表明刺槐健康个体比衰退个体更能有效利用湿润年份有利条件,而具有较高的生长速率。研究揭示出黄土高原健康和衰退刺槐个体生长趋势变化及对气候响应敏感性均存在明显差异性,将为气候变化背景下人工刺槐林生长衰退和死亡预测模型建立提供科学依据,因而对黄土高原人工刺槐林生态恢复和保护及可持续经营具有科学价值。  相似文献   

11.
Understanding the response of long-lived species to natural climatic variability at multiple scales is a prerequisite for forecasting ecosystem responses to global climate change. This study investigated the response of piñon pine (Pinus edulis) to natural climatic variability using information on physiology and growth as recorded in leaves and tree rings. δ13C of annual leaf cohorts (δ13Cleaf) and tree rings (δ13Cring) were measured at an ecotonal/xeric site and a mid-range/mesic site. Ring width indices (RWI) were used to estimate annual growth of individual trees. Relationships between seasonal and annual climate parameters and δ13C and growth were investigated. δ13C–climate relationships were stronger for δ13Cleaf than for δ13Cring especially at the xeric site. The mean monthly maximum summer temperatures over May through September (summer T max) had the strongest influence on δ13Cleaf. There was a strong negative relationship between RWI with summer T max and a strong positive relationship between RWI with October to October precipitation (water–year PPN) at both sites. This suggests that piñon pine populations could be vulnerable to decreased growth and, perhaps mortality, in response to warmer, drier conditions predicted by models of global climate change.  相似文献   

12.
In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.  相似文献   

13.

Background and aims

Soil acidification is known to be one of the constraints of tree growth; however, it is unclear how it affects tree growth at photosynthesis level (i.e., through affecting stomatal conductance vs. carboxylation rate) during the growth of trees. This paper studied the effects of soil acidification on Pinus densiflora foliar chemistry and tree ring C isotope ratio (13C/12C, expressed as δ13C) and their relationship with tree growth.

Methods

Tree growth (diameter, annual growth ring area, and root biomass), soil chemistry (pH, mineral N, and exchangeable Ca and Al), foliage chemistry (N, Ca/Al, and δ13C), and tree ring δ13C in P. densiflora stands along a soil pH gradient (from 4.38 to 4.83, n?=?9) in southern Korea were investigated.

Results

Overall, trees with relatively poor growth under more acidic soil conditions (low pH and Ca/Al) had lower values of foliar N concentration and δ13C and tree ring δ13C, suggesting that restricted N uptake under more acidic soil conditions caused N limitation for photosynthesis, leading to poor tree growth. In addition, relationships between mean annual area increment and carbon isotope discrimination of tree rings at five-yr intervals from 1968 to 2007 revealed that the impact of soil acidification on tree growth became severer during the last 15 yrs as negative correlations between them became significant after 1993.

Conclusions

Reduced N uptake under acidic soil conditions resulted in lower radial growth of P. densiflora via non-stomatal limitation of photosynthesis.  相似文献   

14.
Drought-induced events of massive tree mortality appear to be increasing worldwide. Species-specific vulnerability to drought mortality may alter patterns of species diversity and affect future forest composition. We have explored the consequences of the extreme drought of 2005, which caused high sapling mortality (approx. 50 %) among 10-year-old saplings of two coexisting pine species in the Mediterranean mountains of Sierra Nevada (Spain): boreo-alpine Pinus sylvestris and Mediterranean P. nigra. Sapling height growth, leaf δ13C and δ18O, and foliar nitrogen concentration in the four most recent leaf cohorts were measured in dead and surviving saplings. The foliar isotopic composition of dead saplings (which reflects time-integrated leaf gas-exchange until mortality) displayed sharp increases in both δ13C and δ18O during the extreme drought of 2005, suggesting an important role of stomatal conductance (gs) reduction and diffusional limitations to photosynthesis in mortality. While P. nigra showed decreased growth in 2005 compared to the previous wetter year, P. sylvestris maintained similar growth levels in both years. Decreased growth, coupled with a sharper increase in foliar δ18O during extreme drought in dead saplings, indicate a more conservative water use strategy for P. nigra. The different physiological behavior of the two pine species in response to drought (further supported by data from surviving saplings) may have influenced 2005 mortality rates, which contributed to 2.4-fold greater survival for P. nigra over the lifespan of the saplings. This species-specific vulnerability to extreme drought could lead to changes in dominance and distribution of pine species in Mediterranean mountain forests.  相似文献   

15.
The Popocatépetl volcano resumed its eruptive activity in 1994 and is still active. The largest eruption recorded during this new stage of activity occurred in December 2000. We traced the volcanic activity signal in tree-rings from Pinus hartwegii trees located in the north slope of the volcano, located at ∼3 km from the volcanic cone. Annually resolved tree-ring widths, elemental and stable δ13C and δ18O isotope composition were measured during the period 1989–2014 to study the effects of the volcanic activity on trees. Our results indicate a high increase in the concentration of metal elements (Co, Cr, Cu, Fe, Li, Mo, Ni, Pb, Rb, Sr, Ti, Zn) in tree rings following the major 2000 volcanic eruption, compared to the pre-eruption period from 1989 to 1993. Other chemical elements such as Al, K and S peaked 2 years later, in the 2003 tree ring, that matched with the formation of a very narrow ring that year. This sharp reduction of growth was probably driven by a combination of harsh climatic conditions (drought) with the lagged negative effects of the 2000 eruption. Carbon isotope discrimination (Δ13C) and δ18O increased from 1995 to 2006, suggesting reduced stomatal conductance, photosynthetic activity and water use efficiency due to the large dust veil covering the study zone. The variation of relevant elements (Ca, Mn) showing significant correlations with tree growth, Δ13C and δ18O can be attributed to the selective availability of elements following the soil acidification caused by the volcanic activity. Our findings suggest that the recent activity of the Popocatépetl might have increased tree vulnerability, as reflected in the sharp reduction of growth following the drought recorded 2 years after the large eruption of December 2000. Our results warn about the cumulative negative effects of volcanic activity and harsh climatic conditions on tree growth and functioning.  相似文献   

16.
We investigated whether stand structure modulates the long-term physiological performance and growth of Pinus halepensis Mill. in a semiarid Mediterranean ecosystem. Tree radial growth and carbon and oxygen stable isotope composition of latewood (δ(13)C(LW) and δ(18)O(LW), respectively) from 1967 to 2007 were measured in P. halepensis trees from two sharply contrasting stand types: open woodlands with widely scattered trees versus dense afforested stands. In both stand types, tree radial growth, δ(13)C(LW) and δ(18)O(LW) were strongly correlated with annual rainfall, thus indicating that tree performance in this semiarid environment is largely determined by inter-annual changes in water availability. However, trees in dense afforested stands showed consistently higher δ(18)O(LW) and similar δ(13)C(LW) values compared with those in neighbouring open woodlands, indicating lower stomatal conductance and photosynthesis rates in the former, but little difference in water use efficiency between stand types. Trees in dense afforested stands were more water stressed and showed lower radial growth, overall suggesting greater vulnerability to drought and climate aridification compared with trees in open woodlands. In this semiarid ecosystem, the negative impacts of intense inter-tree competition for water on P. halepensis performance clearly outweigh potential benefits derived from enhanced infiltration and reduced run-off losses in dense afforested stands.  相似文献   

17.
During the 20th century, high mortality rates of Scots pine (Pinus silvestris L.) have been observed over large areas in the Rhône valley (Valais, Switzerland) and in other dry valleys of the European Alps. In this study, we evaluated drought as a possible inciting factor of Scots pine decline in the Valais. Averaged tree-ring widths, standardized tree-ring series, and estimated annual mortality risks were related to a drought index. Correlations between drought indices and standardized tree-ring series from 11 sites showed a moderate association. Several drought years and drought periods could be detected since 1864 that coincided with decreased growth. Although single, extreme drought years had generally a short-term, reversible effect on tree growth, multi-year drought initiated prolonged growth decreases that increased a tree’s long-term risk of death. Tree death occurred generally several years or even decades after the drought. In conclusion, drought has a limiting effect on tree growth and acts as a bottleneck event in triggering Scots pine decline in the Valais.  相似文献   

18.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   

19.
Forests of the future need to cope with adverse climatic conditions, in particular drought, to ensure forest stability and productivity. Given the usually long rotation period of forests, forest managers need to select appropriate, i.e. productive and climate-change resilient tree species and/or provenances, to lower tree-mortality risks and sustain current wood production rates at the end of the 21st century. A frequent means of assessing which provenances of a given species are adapted to anticipated climate conditions is common garden experiments, where trees from different provenances are planted under similar climate conditions. However, in this context soil conditions also play an important role, since they govern how climate translates into plant-available water and hence plant’s ability to cope with extreme drought events. Here, we examine the effects of soil conditions on pedunculate oak (Quercus robur L.), by studying 10 different Dutch oak provenances that were planted in three provenance trials on different soil types in 1988 in the Netherlands. Using dendroecological methods, we quantified provenance-specific productivity and assessed provenance- and site-specific growth patterns. Our results indicated clear differences in productivity among provenances as well as soil-type specific growth patterns. Consequently, our study highlights the importance of incorporating soil characteristics when evaluating the growth performance of provenances within common garden experiments.  相似文献   

20.
Wood nitrogen isotope composition (δ15N) provides a potential retrospective evaluation of ecosystem N status but refinement of this index is needed. We calibrated current wood δ15N of Douglas-fir (Pseudotsuga menziesii), an ectomycorrhizal tree species, against a productivity gradient of contrasting coastal forests of southern Vancouver Island (Canada). We then examined historical δ15N via increment cores, and tested whether wood δ15N corresponded with climatic fluctuations. Extractable soil N ranged from 11 to 43 kg N ha?1 along the productivity gradient, and was characterized by a progressive replacement of N forms (amino acids, NH4 + and NO3 ?). Current wood δ15N was significantly less depleted (?5.0 to ?2.6 ‰) with increasing productivity, although linear correlations were stronger with Δδ15N (the difference between wood and soil δ15N) to standardize the extent of isotopic fractionation by ectomycorrhizal fungi. An overall decline in wood δ15N of 0.9 ‰ over the years 1900–2009 was detected, but trends diverged widely among plots, including positive, negative and no trend with time. We did not detect significant correlations in detrended wood δ15N with mean annual temperature or precipitation. The contemporary patterns in stand productivity, soil N supply and wood δ15N were moderately strong, but interpreting historical patterns in δ15N was challenging because of potential variations in N uptake related to stand dynamics. The lack of wood δ15N correlations with climate may be partly due to methodological limitations, but might also reflect the relative stability in N supply due to the overriding constraints of soil organic matter quantity and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号