首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
miRNAs (microRNAs) were first discovered as critical regulators of developmental timing events in Caenorhabditis elegans. Subsequent studies have shown that miRNAs and cellular factors necessary for miRNA biogenesis are conserved in many organisms, suggesting the importance of miRNAs during developmental processes. Indeed, mutations in the miRNA-processing pathway induce pleiotropic defects in development, which accompany perturbation of correct expression of target genes. However, control of gene expression in development is not the only function of miRNAs. Recent work has provided new insights into the role of miRNAs in various biological events, including aging and cancer. C. elegans continues to be helpful in facilitating a further understanding of miRNA function in human diseases.  相似文献   

2.
A large number of etiological factors and the complexity of breast cancers present challenges for prevention and treatment. Recently, the emergence of microRNAs (miRNAs) as cancer biomarkers has added an extra dimension to the ‘molecular signatures’ of breast cancer. Bioinformatic analyses indicate that each miRNA can regulate hundreds of target genes and could serve functionally as ‘oncogenes’ or ‘tumour suppressor’ genes, and co‐ordinate multiple cellular processes relevant to cancer progression. A number of studies have shown that miRNAs play important roles in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer cells. This review provides a comprehensive overview of miRNAs with established functional relevance in breast cancer, their established target genes and resulting cellular phenotype. The role and application of circulating miRNAs in breast cancer is also discussed. Furthermore, we summarize the role of miRNAs in the hallmarks of breast cancer, as well as the possibility of using miRNAs as potential biomarkers for detection of breast cancer.  相似文献   

3.
4.
In the nematode Caenorhabditis elegans, a TGFbeta-related signaling pathway regulates body size and male tail morphogenesis. We sought to identify genes encoding components or modifiers of this pathway in a large-scale genetic screen. Remarkably, this screen was able to identify essentially all core components of the TGFbeta signaling pathway. Among 34 Small mutants, many mutations disrupt genes encoding recognizable components of the TGFbeta pathway: DBL-1 ligand, DAF-4 type II receptor, SMA-6 type I receptor, and SMA-2, SMA-3, and SMA-4 Smads. Moreover, we find that at least 11 additional complementation groups can mutate to the Small phenotype. Four of these 11 genes, sma-9, sma-14, sma-16, and sma-20 affect male tail morphogenesis as well as body size. Two genes, sma-11 and sma-20, also influence regulation of the developmentally arrested dauer larval stage, suggesting a role in a second characterized TGFbeta pathway in C. elegans. Other genes may represent tissue-specific factors or parallel pathways for body size control. Because of the conservation of TGFbeta signaling pathways, homologs of these genes may be involved in tissue specificity and/or crosstalk of TGFbeta pathways in other animals.  相似文献   

5.
The nematode Caenorhabditis elegans is widely used as a model organism for studying many fundamental aspects of development and cell biology, including processes underlying human disease. The genome of C. elegans encodes over 19,000 protein-coding genes and hundreds of non-coding RNAs. The availability of whole genome sequence has facilitated the development of high throughput techniques for elucidating the function of individual genes and gene products. Furthermore, attempts can now be made to integrate these substantial functional genomics data collections and to understand at a global level how the flow of genomic information that is at the core of the central dogma leads to the development of a multicellular organism.  相似文献   

6.
Undergraduate laboratory exercises addressing aspects of cancer biology such as increased cell proliferation, gain-of-function signaling mutations and tumour formation often rely on tissue culture or even small mammal models. Many departments have limited or no access to these tools, and even well-equipped departments face logistical problems when incorporating these models into laboratory classes. I have developed a laboratory exercise using the microscopic worm, C. elegans, to demonstrate the effects of Notch receptor mutations on cell proliferation. Notch, which is activated by juxtacrine signaling, is mutated in many human cancers. In this exercise, students compare the germline phenotypes of worms that have a loss-of-function Notch mutation (no cells in the germline) or a gain-of-function Notch mutation (over-proliferation resulting in a germline tumour). Students also genotype the worms and perform sequence analysis to determine the effects of the mutations on the protein sequence. This laboratory exercise demonstrates oncogenic proliferation, correlates genotype to phenotype, exposes students to model organisms and introduces sequence databases and analysis. In addition to cancer biology courses, this exercise could be incorporated in courses with a focus on genetics, cell biology or developmental biology.  相似文献   

7.
8.
The evolutionary conserved PAR proteins control polarization and asymmetric division in many organisms. Recent work in Caenorhabditis elegans demonstrated that nos-3 and fbf-1/2 can suppress par-2(it5ts) lethality, suggesting that they participate in cell polarity by regulating the function of the anterior PAR-3/PAR-6/PKC-3 proteins. In Drosophila embryos, Nanos and Pumilio are homologous to NOS-3 and FBF-1/2 respectively and control cell polarity by forming a complex with the tumor suppressor Brat to inhibit Hunchback mRNA translation. In this study, we investigated the possibility that Brat could control cell polarity and asymmetric cell division in C. elegans. We found that disrupting four of the five C. elegans Brat homologs (Cebrats) individually results in suppression of par-2(it5ts) lethality, indicating that these genes are involved in embryonic polarity. Two of the Cebrats, ncl-1 and nhl-2, partially restore the localization of PAR proteins at the cortex. While mutations in the four Cebrat genes do not severely impair polarity, they display polarity-associated defects. Surprisingly, these defects are absent from nos-3 mutants. Similarly, while nos-3 controls PAR-6 protein levels, this is not the case for any of the Cebrats. Our results, together with results from Drosophila, indicate that Brat family members function in generating cellular asymmetries and suggest that, in contrast to Drosophila embryos, the C. elegans homologs of Brat and Nanos could participate in embryonic polarity via distinct mechanisms.  相似文献   

9.
目的:利用秀丽线虫研发合适的低氧损伤模型,以更好地揭示低氧生理和低氧病理的分子机制.方法:通过对秀丽线虫进行不同时间的低氧处理,系统观察线虫的死亡率、运动功能、细胞形态及相关蛋白表达水平的变化,分析低氧对线虫的损伤情况.结果:氧浓度为0.2%的物理性低氧可引起秀丽线虫多种细胞形态发生变化,进而导致线虫死亡,且死亡率随低...  相似文献   

10.
宋少娟  郭亚平  张学尧  张建珍  马恩波 《遗传》2014,36(12):1261-1268
铜在有机体代谢过程中发挥着重要作用, 但过量可产生毒害效应。文章以秀丽隐杆线虫(Caenorhabditis elegans)为模式生物, 寻找多细胞生物中铜代谢调节的关键基因。采用甲基磺酸乙酯(EMS)诱变秀丽隐杆线虫, 通过100 000个杂合基因组的筛选得到两个抗铜突变体ms1和ms2。在筛选培养基上野生型停止发育, 而抗铜突变体则可发育到成虫, 且抗铜性状能稳定遗传。与N2的回交实验表明, ms1的抗铜表型可能由单基因隐性突变导致, ms2的抗铜表型消失, 可能是由多基因突变引起。以CB4856和ms1作为亲本, 构建了F2群, 经SNP定位, 确定ms1突变位点位于染色体II(LGII)上, 进一步对LGII染色体上的8个SNP标记进行分析, 将ms1的突变位点定位在LGII:-6附近。秀丽隐杆线虫抗铜突变体ms1的筛选和定位可为深入研究线虫铜代谢及调控的分子机制提供实验依据。  相似文献   

11.
Over a century ago, the zoologist Emile Maupas first identified the nematode, Rhabditis elegans, in the soil in Algiers. Subsequent work and phylogenic studies renamed the species Caenorhabditis elegans or more commonly referred to as C. elegans; (Caeno meaning recent; rhabditis meaning rod; elegans meaning nice). However, it was not until 1963, when Sydney Brenner, already successful from his work on DNA, RNA, and the genetic code, suggested the future of biological research lay in model organisms. Brenner believed that biological research required a model system that could grow in vast quantities in the lab, were cheap to maintain and had a simple body plan, and he chose the nematode C. elegans to fulfill such a role. Since that time, C. elegans has emerged as one of the premiere model systems for aging research. This paper reviews some initial identification of mutants with altered lifespan with a focus on genetics and then discusses advantages and disadvantages for using C. elegans as a model system to understand human aging. This review focuses on molecular genetics aspects of this model organism.  相似文献   

12.
In humans, well over one hundred diseases have been linked to mitochondrial dysfunction and many of these are associated with neurodegeneration. At the root of most of these diseases lay ineffectual energy production, caused either by direct or indirect disruption to components of the mitochondrial electron transport chain. It is surprising then to learn that, in the nematode Caenorhabditis elegans, a collection of mutants which share disruptions in some of the same genes that cause mitochondrial pathogenesis in humans are in fact long-lived. Recently, we resolved this paradox by showing that the C. elegans "Mit mutants" only exhibit life extension in a defined window of mitochondrial dysfunction. Similar to humans, when mitochondrial dysfunction becomes too severe these mutants also exhibit pathogenic life reduction. We have proposed that life extension in the Mit mutants occurs as a by-product of compensatory processes specifically activated to maintain mitochondrial function. We have also proposed that similar kinds of processes may act to delay the symptomatic appearance in many human mitochondrial-associated disorders. In the present report, we describe our progress in using the Mit mutants as an investigative tool to study some of the processes potentially employed by human cells to offset pathological mitochondrial dysfunction.  相似文献   

13.
14.
It is widely believed that normal by-products of oxidative metabolism and the subsequent molecular damage inflicted by them couple the aging process to metabolic rate. Accordingly, high metabolic rates would be expected to accelerate aging, and life-extending interventions are often assumed to act by attenuating metabolic rate. Notorious examples in Caenorhabditis elegans are food restriction, mutation in the Clock genes and several genes of the insulin-like signalling pathway. Here we discuss how metabolic rate can be accurately measured and normalized, and how to deal with differences in body size. These issues are illustrated using experimental data of the long-lived mutant strains clk-1(e2519) and daf-2(e1370). Appropriate analysis shows that metabolic rates in wildtype and in the clk-1 mutant are very similar. In contrast, the metabolic rate profiles point to a metabolic shift toward enhanced efficiency of oxidative phosphorylation in the daf-2 worms.  相似文献   

15.
Yang CC  Chen D  Lee SS  Walter L 《Aging cell》2011,10(4):724-728
Here, we report that inactivation of the Caenorhabditis elegans dynamin-related protein DRP-1, a key component responsible for mitochondrial fission and conserved from yeast to humans, dramatically enhanced the effect of reduced insulin signaling (IIS) to extend lifespan. This represents the first report of a beneficial impact of manipulating mitochondrial dynamics on animal lifespan and suggests that mitochondrial morphology and IIS cooperate to modulate aging.  相似文献   

16.
New C. elegans studies imply that lipases and lipid desaturases can mediate signaling effects on aging. But why might fat homeostasis be critical to aging? Could problems with fat handling compromise health in nematodes as they do in mammals? The study of signaling pathways that control longevity could provide the key to one of the great unsolved mysteries of biology: the mechanism of aging. But as our view of the regulatory pathways that control aging grows ever clearer, the nature of aging itself has, if anything, grown more obscure. In particular, focused investigations of the oxidative damage theory have raised questions about an old assumption: that a fundamental cause of aging is accumulation of molecular damage. Could fat dyshomeostasis instead be critical?  相似文献   

17.
The orphan receptor ROS1 is a human proto‐oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL‐3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL‐3, the mucin SRAP‐1, and BCC‐1, the homolog of mRNA regulating protein Bicaudal‐C. This study answers a longstanding question as to the developmental function of ROL‐3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
There are emerging data to suggest that microRNAs (miRNAs) have significant roles in regulating the function of normal cells and cancer stem cells (CSCs). This review aims to analyse the roles of miRNAs in the regulation of colon CSCs through their interaction with various signalling pathways. Studies showed a large number of miRNAs that are reported to be deregulated in colon CSCs. However, few of the studies available were able to outline the function of miRNAs in colon CSCs and uncover their signalling pathways. From those miRNAs, which are better described, miR‐21 followed by miR‐34, miR‐200 and miR‐215 are the most reported miRNAs to have roles in colon CSC regulation. In particular, miRNAs have been reported to regulate the stemness features of colon CSCs mainly via Wnt/B‐catenin and Notch signalling pathways. Additionally, miRNAs have been reported to act on processes involving CSCs through cell cycle regulation genes and epithelial–mesenchymal transition. The relative paucity of data available on the significance of miRNAs in CSCs means that new studies will be of great importance to determine their roles and to identify the signalling pathways through which they operate. Such studies may in future guide further research to target these genes for more effective cancer treatment. miRNAs were shown to regulate the function of cancer stem cells in large bowel cancer by targeting a few key signalling pathways in cells.  相似文献   

19.
Abstract

We evaluated the differential expression of several microRNAs (miRNAs) among malignant cells in ascites and matched omental metastasis in patients with epithelial ovarian cancer (EOC). Ascites and omental tumors were collected prospectively from five patients who were undergoing primary surgical cytoreduction. Patient samples were processed and treated with carboplatin, paclitaxel and combination chemotherapy. Cell viability was evaluated and miRNA profiling was performed on both tumor cells from ascites fluid and omental cake. Quantitative real-time PCR (RT-q-PCR) and western blots were used to evaluate expressions of miRNA-21 and miRNA -214 and associated proteins. Malignant cells in ascites showed greater cell viability when treated with carboplatin compared to omental metastasis. A significant up-regulation of miRNA-21 and miRNA-214 was observed in malignant cells of ascites compared to omental metastasis; this was confirmed by both cell viability assay and RT-q-PCR. Ours is the first report that demonstrates significant up-regulation of miRNA-21 and miRNA-214 in tumor cells from ascites of patients with EOC compared to omental metastasis. This finding has important implications for intrinsic carboplatin resistance in these patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号