首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to compare oscillation of skin blood flow with that of deoxygenation in muscle during light exercise in order to determine the physiological significance of oscillations in deoxygenation. Prolonged exercise with 50% of peak oxygen uptake was performed for 60 min. Skin blood flow (SBF) was measured using a laser blood flow meter on the right vastus lateralis muscle. Deoxygenated haemoglobin/myoglobin (DHb/Mb) concentration in the left vastus lateralis were measured using a near-infrared spectroscopy system. SBF and DHb/Mb during exercise were analysed by fast Fourier transform. We classified frequency bands according to previous studies (Kvernmo et al. 1999, Kvandal et al. 2006) into phase I (0.005-0.0095 and 0.0095-0.02 Hz), phase II (0.02-0.06 Hz: phase II) and phase III (0.06-0.16 Hz). The first peak of power spectra density (PSD) in SBF appeared at 0.0078 Hz in phase I. The second peak of PSD in SBF appeared at 0.035 Hz. The third peak of PSD in SBF appeared at 0.078 Hz. The first peak of PSD in DHb/Mb appeared at 0.0039 Hz, which was out of phase I. The second peak of PSD in DHb/Mb appeared at 0.016 Hz. The third peak of PSD in DHb/Mb appeared at 0.035 Hz. The coefficient of cross correlation was very low. Cross power spectra density showed peaks of 0.0039, 0.016 and 0.035 Hz. It is concluded that a peak of 0.016 Hz in oscillations of DHb/Mb observed in muscle during exercise is associated with endothelium-dependent vasodilation (phase I) and that a peak of 0.035 Hz in DHb/Mb is associated with sympathetic nerve activity (phase II). It is also confirmed that each peak of SBF oscillations is observed in each phase.  相似文献   

2.
The aim of the study was to evaluate skin microvascular reactivity (MVR) and possible influencing factors (fibrinolysis, oxidative stress, and endothelial function) in patients with Cushing's syndrome. Twenty-nine patients with active Cushing's syndrome (ten of them also examined after a successful operation) and 16 control subjects were studied. Skin MVR was measured by laser Doppler flowmetry during post-occlusive (PORH) and thermal hyperemia (TH). Malondialdehyde and Cu,Zn-superoxide dismutase were used as markers of oxidative stress. Fibrinolysis was estimated by tissue plasminogen activator (tPA) and its inhibitor (PAI-1). N-acetyl-beta-glucosaminidase, E-selectin, P-selectin, and ICAM-1 were used as markers of endothelial function. Oxidative stress and endothelial dysfunction was present in patients with hypercortisolism, however, increased concentration of ICAM-1 was also found in patients after the operation as compared to controls (290.8+/-74.2 vs. 210.9+/-56.3 ng.ml(-1), p<0.05). Maximal perfusion was significantly lower in patients with arterial hypertension during PORH and TH (36.3+/-13.0 vs. 63.3+/-32.4 PU, p<0.01, and 90.4+/-36.6 vs. 159.2+/-95.3 PU, p<0.05, respectively) and similarly the velocity of perfusion increase during PORH and TH was lower (3.2+/-1.5 vs. 5.2+/-3.4 PU.s(-1), p<0.05, and 0.95+/-0.6 vs. 1.8+/-1.1 PU.s(-1), p<0.05, respectively). The most pronounced impairment of microvascular reactivity was present in patients with combination of arterial hypertension and diabetes mellitus.  相似文献   

3.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   

4.
We have used the wavelet transform to evaluate the time-frequency content of laser-Doppler flowmetry (LDF) signals measured simultaneously on the surfaces of free microvascular flaps deprived of sympathetic nerve activity (SNA), and on adjacent intact skin, in humans. It was thereby possible to determine the frequency interval within which SNA manifests itself in peripheral blood flow oscillations. The frequency interval from 0.0095 to 2 Hz was examined and was divided into five subintervals: I, approximately 0.01 Hz; II, approximately 0.04 Hz; III, approximately 0.1 Hz; IV, approximately 0.3 Hz; and V, approximately 1 Hz. The average value of the LDF signal in the time domain as well as the mean amplitude and total power in the interval from 0.0095 to 2 Hz and amplitude and power within each of the five subintervals were significantly lower for signals measured on the free flap (P < 0.002). The normalized spectral amplitude and power in the free flap were significantly lower in only two intervals: I, from 0.0095 to 0.021 Hz; and II, from 0.021 to 0.052 Hz (P < 0.05); thus indicating that SNA is manifested in at least one of these frequency intervals. Because interval I has recently been shown to be the result of vascular endothelial activity, we conclude that we have identified SNA as influencing blood flow oscillations in normal tissues with repetition times of 20-50 s or frequencies of 0.02-0.05 Hz.  相似文献   

5.
We studied the effect of troglitazone on cellular acid-base balance and alanine formation in isolated rat mesangial cells. Mesangial cells were grown to confluency in RPMI 1640 media on 30-mm chambers used to monitor both cellular pH using the pH-sensitive dye 2'7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein and metabolic acid production as well as glutamine metabolism. Troglitazone (10 microM) induced a spontaneous cellular acidosis (6.95 +/- 0.02 vs. 7.47 +/- 0.04, respectively; P < 0.0001) but without an increase in lactic acid production. Alanine production was reduced 64% (P < 0.01) consistent with inhibition of the glutamate transamination. These findings pointed to a decrease in acid extrusion rather than an increase in acid production as the underlying mechanism leading to the cellular acidosis. To test their acid extrusion capabilities, mesangial cells were acid loaded with NH and then allowed to recover in Krebs-Henseleit media or in Krebs-Henseleit media minus bicarbonate (HEPES substituted), and the recovery response (Delta pH(i)/min) was monitored. In the presence of 10 microM troglitazone, the recovery response to the NH acid load was virtually eliminated in the bicarbonate-buffered media (0.00 +/- 0.001 vs. 0.06 +/- 0.02 pH(i)/min, P < 0.0001 vs. control) and reduced 75% in HEPES-buffered media (0.01 +/- 0.01 vs. 0.04 +/- 0.02 pH(i)/min, P < 0.002 vs. control). These results show that troglitazone induces a spontaneous cellular acidosis resulting from a reduction in cellular acid extrusion.  相似文献   

6.
Nakamura M  Yoshida H  Hiramori K 《Life sciences》1999,65(20):2151-2156
Adrenomedullin (ADM) and proadrenomedullin N-terminal peptide (PAMP), both of which are derived from preproadrenomedullin, are reported to have a potent hypotensive effect in animals. However, no data are available concerning the vasodilatory potency of PAMP or comparing this potency to that of ADM in human vasculature. We examined the effects of intra-arterial infusion of graded doses of ADM (1.25, 2.5, 5.0 and 7.5 pmol/min per 100 ml of tissue) and PAMP (125, 250, 500, 750 and 1000 pmol/min per 100 ml of tissue) on total forearm blood flow and forearm skin blood flow in 11 healthy subjects. ADM increased total forearm blood flow from 2.9 +/- 0.4 to 8.6 +/- 1.1 ml/min per 100 ml (p < 0.01), and skin blood flow from 0.07 +/- 0.02 to 0.14 +/- 0.03 volts (p < 0.01). In contrast to this potent vasodilatory effect, a significant rise in forearm skeletal blood flow was seen only in response to the maximum dose of PAMP (from 2.7 +/- 0.5 to 5.3 +/- 1.0 ml/min per 100 ml; p < 0.01). In addition, PAMP had no significant vasoactive effect on skin blood flow (from 0.06 +/- 0.02 to 0.09 +/- 0.03 volts; NS). In conclusion, the skeletal muscle vasodilator potency of PAMP is less than one hundredth of that of ADM in human forearm. Given its weak dilator potency, it seems unlikely that PAMP alone could significantly regulate resistance vessel tone as a circulating hormone in humans.  相似文献   

7.
Effect of training/detraining on submaximal exercise responses in humans   总被引:2,自引:0,他引:2  
Human subjects participated in a training/detraining paradigm which consisted of 7 wk of intense endurance training followed by 3 wk of inactivity. In previously sedentary subjects, training produced a 23.9 +/- 7.2% increase in maximal aerobic power (V02max) (group S). Detraining did not affect group S V02max. In previously trained subjects (group T), the training/detraining paradigm did not affect V02max. In group S, training produced an increase in vastus lateralis muscle citrate synthase (CS) activities (nmol.mg protein-1. min-1) from 67.1 +/- 14.5 to 106.9 +/- 22.0. Detraining produced a decrease in CS activity to 80 +/- 14.6. In group T, pretraining CS activity (139.5 +/- 14.9) did not change in response to training. Detraining, however, produced a decrease in CS activity (121.5 +/- 7.8 to 66.8 +/- 5.9). Group S respiratory exchange ratios obtained during submaximal exercise at 60% V02max (R60) decreased in response to training (1.00 +/- 0.02 to 0.87 +/- 0.02) and increased (0.96 +/- 0.02) after detraining. Group T R60 (0.91 +/- 0.01) was not affected by training but increased (0.89 +/- 0.02 to 0.95 +/- 0.02) after detraining. R60 was correlated to changes in CS activity but was unrelated to changes in V02max. These data support the hypothesis that the mitochondrial content of working skeletal muscle is an important determinant of substrate utilization during submaximal exercise.  相似文献   

8.
Heme oxygenase (HO) has a central role in cellular antioxidant defences and vascular protection, and it may mediate pleiotropic actions of drugs used in cardiovascular therapy. We investigated whether long-term use of statins upregulates HO activity and increases carbon monoxide (CO) and bilirubin levels in vivo. Adult FvB mice were given atorvastatin or rosuvastatin (5 mg/kg) daily by i.p. injections for 1, 2, or 3 weeks. HO activity, tissue CO, bilirubin, and antioxidant levels, total plasma bilirubin, and carboxyhemoglobin (COHb) were measured. Fold changes in heart HO activity significantly increased after 1, 2, and 3 weeks of atorvastatin (1.24 +/- 0.06 (p < or = 0.05); 1.29 +/- 0.26 (p < or = 0.03); 1.33 +/- 0.08 (p < 0.01), respectively) and 2 and 3 weeks of rosuvastatin (1.23 +/- 0.20 (p < or = 0.03); 1.63 +/- 0.42 (p < 0.01), respectively). Heart tissue CO and COHb levels also increased after 3 weeks with atorvastatin (1.30 +/- 0.24 (p < or = 0.05); 1.92 +/- 0.17 (p < or = 0.001), respectively) and rosuvastatin (1.47 +/- 0.13 (p < or = 0.004); 1.63 +/- 0.12 (p < or = 0.001), respectively). Significant increases in heart antioxidant levels were observed after statin treatment and corroborated by heart bilirubin content elevations. Antioxidant level increases were abolished by treatment with an HO inhibitor. These findings suggest that the induction of HO and the production of its products, CO and bilirubin, may be a mechanism by which statins exert antioxidant actions and confer cardioprotection in vivo.  相似文献   

9.
Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01–0.02 Hz; middle: 0.02–0.06 Hz; and high: 0.06–0.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.  相似文献   

10.
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.  相似文献   

11.
The present study aimed to evaluate adipose tissue blood flow (ATBF) by means of laser-Doppler flowmetry (LDF) in humans. Lower body negative pressure (LBNP) and straining known to affect epidermal blood flow through the autonomic nervous system were performed in 11 lean and 11 obese female volunteers. ATBF changes were compared between both groups and also discriminated from skin blood flow (SBF) responses of the immediate vicinity. Additionally, LDF measurements were compared with flow measurements using (133)xenon washout in 10 lean subjects during whole body cooling. LDF estimations of SBF and ATBF showed a positive correlation to (133)Xe during cooling. SBF and ATBF were reduced to the same extent in both lean and obese subjects during LBNP. Straining induced divergent changes in SBF and ATBF: initially SBF decreased while ATBF increased, but toward the end of straining SBF increased above baseline and ATBF returned down to baseline level. Those changes were similar in both weight groups. Interestingly, only in obese subjects, both LBNP and straining were followed by ATBF augmentation, while SBF levels remained stable. In conclusion, LDF compares with (133)Xe washout in monitoring ATBF during tonic perfusion changes. Its strength, however, lies in the detection of rapid flow alterations within the subcutaneous tissue, allowing the evaluation of reflex responses of the subcutaneous microcirculation. Interestingly, those rapid changes in SBF and ATBF can be both concordant and discordant. With regard to ATBF, vasoconstrictor components of the reflex responses were similar in lean and obese subjects, whereas vasodilatory responses were more pronounced in obese volunteers.  相似文献   

12.
The present experiment aimed to compare the efficiency of supplementation (+17.5 MJ Net Energy/d starting 47 +/- 4 days after calving) with concentrate (CS, maize grain, n = 10) or with forage (FS, maize silage, n = 10) in estrus-synchronized (Norgestomet implant 10 days inserted 60 +/- 4 days postpartum + PMSG at implant removal) beef cows previously restricted (47 MJ Net Energy/d, 785 g CP/d, 70% of requirements). The type of diet had no significant effect on basal LH concentrations (CS: 0.18 +/- 0.12 vs FS: 0.11+/- 0.02 ng/mL), LH pulse frequency (CS : 0.7 +/- 0.3 vs FS: 0.8 +/- 0.2 pulse/10 h), LH pulse amplitude (CS: 0.55 +/- 0.50 vs FS : 0.62 +/- 0.50 ng/mL) or estradiol (E2) concentrations (CS: 3.3 +/- 0.8 vs FS: 4.6+ /- 0.8 pg/mL) 13 days after the beginning of energy supplementation. No differences between CS and FS cows were observed for the number of small, medium and large follicles nor on the size of the largest follicle from 11 days before implant insertion to implant removal (IR). After IR, an LH surge was observed in 2 of the CS and 4 of the FS cows. The type of energy supplementation had no significant effect on LH (CS: 0.16 +/- 0.06 ng/mL vs FS 0.48 +/- 0.06 ng/mL; P > 0.05) or on estradiol concentrations (CS : 7.8 +/- 0.2 vs FS : 8.9 +/- 0.2 pg/mL, P > 0.10) measured hourly from 29 to 49 h after IR. Cows that ovulated after IR tended to have higher E2 concentrations than cows that did not ovulate (9.4 +/- 0.2 vs 6.3 +/- 0.2 pg/mL, P = 0.08). Similar ovulation and pregnancy rates were observed in CS and FS cows (CS: 6/10 vs FS: 7/10 and CS: 6/10 vs FS: 5/10 respectively, P > 0.05). To conclude, energy supplementation with forage was as effective as energy supplementation with concentrate to influence follicular growth, ovulation and pregnancy percentage after estrus synchronization treatment in diet-restricted beef cows.  相似文献   

13.
Electromagnetic hypersensitivity (EH) is an increasing problem in modern industrial societies. As crawling sensations are frequently mentioned by EH patients alterations in cutaneous microcirculation possibly linked to exposure to magnetic fields might be involved in the development of such sensations and further dysesthesias. In seven healthy volunteers and in three persons convinced to suffer from EH the microcirculation of the right thumb was determined by laser-Doppler-flowmetry (LDF) during exposure to circularly polarized 50 Hz magnetic flux densities of 96 mT. During field exposure the LDF values remained constant. The LDF ratio "field on/field off" was found to be 1.03 +/- 0.03. In contrast, reactive hyperemia and hyperventilation caused significant changes in the LDF values of volunteers as well as of EH patients. Following arterial congestion of the forearm microcirculation of the thumb was clearly increased during reperfusion, and the LDF values were elevated up to 2.02 +/- 0.36. 10 deep breaths caused a significant decrease in the LDF values up to 0.63 +/- 0.18. In conclusion, reactive hyperemia and hyperventilation caused clear alterations of cutaneous microcirculation, whereas, 50 Hz magnetic fields had no influence on cutaneous microcirculation.  相似文献   

14.
Submandibular vascular and secretory responses to parasympathetic chorda-lingual (C-L) stimulation were investigated in anesthetized sheep before, during, and after an intracarotid (ic) infusion of endothelin-1 (ET-1). Stimulation of the peripheral end of the C-L nerve at 4 and 8 Hz produced a frequency-dependent reduction in submandibular vascular resistance (SVR) associated with a frequency-dependent increase in submandibular blood flow, salivary flow, and Na+, K+, and protein output from the gland. During stimulation at 4 Hz, ic ET-1 significantly increased SVR (P < 0.01), without significantly affecting either the aortic blood pressure or heart rate. Submandibular blood flow (SBF) was reduced by 48 +/- 4% and the flow of saliva by 50 +/- 1%. The effect on blood and salivary flow persisted for at least 30 min after the infusion of ET-1. The reduction in SBF was associated with a diminution in the output of Na+,K+, and protein in the saliva (P < 0.01). These effects persisted for 30 min after the infusion of ET-1 had been discontinued and were linearly related to the flow of plasma throughout.  相似文献   

15.
We studied the effect of maturation on contractile properties of tracheal smooth muscle from seventeen 2-wk-old swine (2ws) and fifteen 10-wk-old swine (10ws) in situ and in vitro. The response to parasympathetic stimulation was studied in situ in isometrically fixed segments. Contraction was elicited at lower frequencies [half-maximal response to electrical stimulation (ES50) = 6.7 +/- 0.05 Hz] in 2ws than in 10ws (ES50 = 9.1 +/- 0.4 Hz; P less than 0.01). Despite substantial differences in morphometrically normalized cross-sectional area in 2ws (0.012 +/- 0.003 cm2) and 10ws (0.028 +/- 0.001 cm2; P less than 0.01), maximal active tension elicited by parasympathetic stimulation was similar (12.4 +/- 3.2 g/cm in 2ws vs. 13.3 +/- 2.3 g/cm in 10ws; P = NS). In separate in vitro studies in 25 tracheal smooth muscle strips from 10 swine, concentration-response curves generated with potassium-substituted Krebs solution (KCl) were similar in 2ws and 10ws. In 58 other strips (10 swine), maximal active force elicited with acetylcholine (ACh) in 2ws was significantly greater than for 10ws (P less than 0.001). Removal of the epithelium had no effect. However, cholinesterase inhibition with 10(-7) M physostigmine augmented the response to ACh in 10ws (P less than 0.02) but not 2ws. We demonstrate increased force generation and sensitivity to vagal stimulation in 2ws vs. 10ws, which corresponds to increased reactivity to ACh in vitro. The relative hyperresponsiveness in 2ws is specific for cholinergic response and is attenuated at least in part by maturation of the activity of acetylcholinesterase enzyme.  相似文献   

16.
To find whether the measurement of skin blood flow (SkBF) by laser-Doppler flowmetry (LDF) is influenced by blood flow to underlying skeletal muscle, five subjects performed mild forearm exercise to induce a metabolic hyperemia in muscle in both forearms. This exercise consisted of alternative opening and closing of both hands at a frequency of approximately 1/s for a duration of 3 min. This exercise was performed twice by each subject. Forearm blood flow (FBF) by plethysmography increased from 2.64 +/- 0.49 (rest) to 31.11 +/- 9.95 ml.100 ml-1.min-1 (immediately after exercise) (P less than 0.001). No statistically significant postexercise increase was observed in LDF measured on the dorsal (110 +/- 21 to 105 +/- 21 mV) or ventral surface (266 +/- 113 to 246 +/- 77 mV) of the forearm. LDF measured from the chest also showed no significant change, indicating that the exercise was too mild to have reflex effects on SkBF. Moreover, the slope of the logarithmic linear regression and the half-time for recovery during the postexercise period for FBF were not reflected in LDF measurements from any of the three sites. We conclude that LDF measured from the skin surface is not influenced by blood flow to underlying skeletal muscle.  相似文献   

17.
Volume exclusion, i.e., the space not available for a specific probe, may be dependent on the probe charge. Therefore, interstitial exclusion was measured for positively and negatively charged immunoglobulin (IgG) in skin and muscle of rats by using a continuous infusion method (30). Steady-state concentration of (125)I-labeled IgG 1 (pI = 8.7) and (131)I- labeled IgG 4 (pI = 6.6) was maintained by infusion of tracer for 120-168 h with an implanted osmotic pump. At the end of the infusion period and before tissue sampling, the rat was anesthetized and nephrectomized, and (51)Cr-labeled EDTA was injected and allowed 4 h for equilibration to measure interstitial fluid volume (V(i)). Interstitial fluid was isolated from skin and muscle by using nylon wicks implanted post mortem. The relative IgG available space was measured as the ratio between labeled IgG and (51)Cr-labeled EDTA wick fluid equivalent spaces, and relative excluded volume fraction (V(e)/V(i)) was calculated as 1--V(a)/V(i). V(e)/V(i) in hindlimb skin averaged 0.37 +/- 0.05 (SE) and 0.65 +/- 0.06 (P < 0.01) for IgG 1 and 4, respectively, with corresponding figures of 0.24 +/- 0.05 and 0.51 +/- 0.04 (P < 0.01) in hindlimb muscle (n = 9 for both tissues). These experiments suggest that fixed negative charges, most likely glycosaminoglycans, influence distribution of macromolecules in the interstitium and therefore affect interstitial fluid balance.  相似文献   

18.
How protein metabolism is perturbed during chronic glucocorticoid excess is poorly understood. The aims were to investigate the impact of chronic glucocorticoid excess and restoration of eucortisolemia in Cushing's syndrome (CS) on whole body protein metabolism. Eighteen subjects with CS and 18 normal subjects (NS) underwent assessment of body composition using DEXA and whole body protein turnover with a 3-h constant infusion of l-[(13)C]leucine, allowing calculation of rates of leucine appearance (leucine R(a)), leucine oxidation (L(ox)), and leucine incorporation into protein (LIP). Ten subjects with CS were restudied after restoration of eucortisolemia. Percentage FM was greater (43.9 +/- 1.6 vs. 33.8 +/- 2.4%, P = 0.002) and LBM lower (52.7 +/- 1.6 vs. 62.1 +/- 2.3%, P = 0.002) in CS. LBM was significantly correlated (r(2) > 0.44, P < 0.005) to leuceine R(a), L(ox), and LIP in both groups. After correcting for LBM, leucine R(a) (133 +/- 5 vs. 116 +/- 5 micromol/min, P = 0.02) and L(ox) (29 +/- 1 vs. 24 +/- 1 micromol/min, P = 0.01) were greater in CS. FM significantly correlated (r(2) = 0.23, P < 0.05) with leucine R(a) and LIP, but not L(ox) in CS. In multiple regression, LBM was an independent determinant of all three indexes of leucine turnover, FM of leucine R(a), and LIP and CS of L(ox). Following restoration of eucortisolemia, L(ox) was reduced (Delta-7.5 +/- 2.6 micromol/min, P = 0.02) and LIP increased (Delta+15.2 +/- 6.2 micromol/min, P = 0.04). In summary, whole body protein metabolism in CS is influenced by changes in body composition and glucocorticoid excess per se, which increases protein oxidation. Enhanced protein oxidation is a likely explanation for the reduced protein mass in CS. Successful treatment of CS reduces protein oxidation and increases protein synthesis to prevent ongoing protein loss.  相似文献   

19.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

20.
Cutaneous vascular responses to isometric handgrip exercise   总被引:9,自引:0,他引:9  
Cutaneous vascular responses to dynamic exercise have been well characterized, but it is not known whether that response pattern applies to isometric handgrip exercise. We examined cutaneous vascular responses to isometric handgrip and dynamic leg exercise in five supine men. Skin blood flow was measured by laser-Doppler velocimetry and expressed as laser-Doppler flow (LDF). Arterial blood pressure was measured noninvasively once each minute. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure. LDF and CVC responses were measured at the forearm and chest during two 3-min periods of isometric handgrip at 30% of maximum voluntary contraction and expressed as percent changes from the preexercise levels. The skin was normothermic (32 degrees C) for the first period of handgrip and was locally warmed to 39 degrees C for the second handgrip. Finally, responses were observed during 5 min of dynamic two-leg bicycle exercise (150-175 W) at a local skin temperature of 39 degrees C. Arm LDF increased 24.5 +/- 18.9% during isometric handgrip in normothermia and 64.8 +/- 14.1% during isometric handgrip at 39 degrees C (P less than 0.05). Arm CVC did not significantly change at 32 degrees C but significantly increased 18.1 +/- 6.5% during isometric handgrip at 39 degrees C (P less than 0.05). Arm LDF decreased 12.2 +/- 7.9% during dynamic exercise at 39 degrees C, whereas arm CVC fell by 35.3 +/- 4.6% (in each case P less than 0.05). Chest LDF and CVC showed similar responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号