首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.  相似文献   

2.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   

3.
4.
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.  相似文献   

5.
The dietary polyphenolic compound resveratrol, by activating the protein deacetylase enzyme silent information regulator 2/sirtuin 1 (SIRT1), prolongs life span in evolutionarily distant organisms and may mimic the cytoprotective effects of dietary restriction. The present study was designed to elucidate the effects of resveratrol on cigarette smoke-induced vascular oxidative stress and inflammation, which is a clinically highly relevant model of accelerated vascular aging. Cigarette smoke exposure of rats impaired the acetylcholine-induced relaxation of carotid arteries, which could be prevented by resveratrol treatment. Smoking and in vitro treatment with cigarette smoke extract (CSE) increased reactive oxygen species production in rat arteries and cultured coronary arterial endothelial cells (CAECs), respectively, which was attenuated by resveratrol treatment. The smoking-induced upregulation of inflammatory markers (ICAM-1, inducible nitric oxide synthase, IL-6, and TNF-alpha) in rat arteries was also abrogated by resveratrol treatment. Resveratrol also inhibited CSE-induced NF-kappaB activation and inflammatory gene expression in CAECs. In CAECs, the aforementioned protective effects of resveratrol were abolished by knockdown of SIRT1, whereas the overexpression of SIRT1 mimicked the effects of resveratrol. Resveratrol treatment of rats protected aortic endothelial cells against cigarette smoking-induced apoptotic cell death. Resveratrol also exerted antiapoptotic effects in CSE-treated CAECs, which could be abrogated by knockdown of SIRT1. Resveratrol treatment also attenuated CSE-induced DNA damage in CAECs (comet assay). Thus resveratrol and SIRT1 exert antioxidant, anti-inflammatory, and antiapoptotic effects, which protect the endothelial cells against the adverse effects of cigarette smoking-induced oxidative stress. The vasoprotective effects of resveratrol will likely contribute to its antiaging action in mammals and may be especially beneficial in pathophysiological conditions associated with accelerated vascular aging.  相似文献   

6.
Human sirtuins are a family of seven conserved proteins (SIRT1-7). The most investigated is the silent mating type information regulation-2 homolog (SIRT1, NM_012238 ), which was associated with neuroprotection in models of polyglutamine toxicity or Alzheimer's disease (AD) and whose activation by the phytocompound resveratrol (RES) has been described. We have examined the neuroprotective role of RES in a cellular model of oxidative stress, a common feature of neurodegeneration. RES prevented toxicity triggered by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). This action was likely mediated by SIRT1 activation, as the protection was lost in the presence of the SIRT1 inhibitor sirtinol and when SIRT1 expression was down-regulated by siRNA approach. RES was also able to protect SK-N-BE from the toxicity arising from two aggregation-prone proteins, the AD-involved amyloid-β (1-42) peptide (Aβ42) and the familiar Parkinson's disease linked α-synuclein(A30P) [α-syn(A30P)]. Alpha-syn(A30P) toxicity was restored by sirtinol addition, while a partial RES protective effect against Aβ42 was found even in presence of sirtinol, thus suggesting a direct RES effect on Aβ42 fibrils. We conclude that SIRT1 activation by RES can prevent in our neuroblastoma model the deleterious effects triggered by oxidative stress or α-syn(A30P) aggregation, while RES displayed a SIRT1-independent protective action against Aβ42.  相似文献   

7.
阿尔茨海默病(Alzheimer's disease,AD)是最常见的神经系统变性疾病,主要病理特征为细胞外老年斑(senile plaques,SP)和细胞内神经原纤维缠结(neurofibrillary tangles,NFT)形成.但其发病机制不清,涉及多种病理学变化如炎症反应、氧化应激、线粒体功能障碍、细胞凋亡以及突触功能障碍等.核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是经典的调控机体抗氧化应激反应的核转录因子.Nrf2激活后诱导抗氧化蛋白的表达,提高机体的抗氧化应激能力.随着Nrf2抗氧化应激作用研究的深入,发现Nrf2不仅能够通过抗氧化应激延缓AD的发生发展,且在AD的病理性沉积物的清除、抗炎、抗凋亡、神经营养等方面扮演着重要的角色.近年来,由于多种针对单一靶点的抗AD药物临床试验的失败,有学者提出Nrf2可能是实现AD多靶点疗法的重要因子.因此,本文对Nrf2在AD中的研究现状做一综述,为寻找治疗AD潜在的生物学靶点提供理论依据.  相似文献   

8.
Alzheimer's (AD) and Parkinson's diseases (PD) are late-onset neurodegenerative diseases that have tremendous impact on the lives of affected individuals, their families, and society as a whole. Remarkable efforts are being made to elucidate the dominant factors that result in the pathogenesis of these disorders. Extensive postmortem studies suggest that oxidative/nitrative stresses are prominent features of these diseases, and several animal models support this notion. Furthermore, it is likely that protein modifications resulting from oxidative/nitrative damage contribute to the formation of intracytoplasmic inclusions characteristic of each disease. The frequent presentation of both AD and PD in individuals and the co-occurrence of inclusions characteristic of AD and PD in several other neurodegenerative diseases suggests the involvement of a common underlying aberrant process. It can be surmised that oxidative/nitrative stress, which is cooperatively influenced by environmental factors, genetic predisposition, and senescence, may be a link between these disorders.  相似文献   

9.
The mammalian family of mitogen-activated protein kinases (MAPKs) includes extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK), with each MAPK signaling pathway consisting of at least three components, a MAPK kinase kinase (MAP3K), a MAPK kinase (MAP2K), and a MAPK. The MAPK pathways are activated by diverse extracellular and intracellular stimuli including peptide growth factors, cytokines, hormones, and various cellular stressors such as oxidative stress and endoplasmic reticulum stress. These signaling pathways regulate a variety of cellular activities including proliferation, differentiation, survival, and death. Deviation from the strict control of MAPK signaling pathways has been implicated in the development of many human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and various types of cancers. Persistent activation of the JNK or p38 signaling pathways has been suggested to mediate neuronal apoptosis in AD, PD, and ALS, whereas the ERK signaling pathway plays a key role in several steps of tumorigenesis including cancer cell proliferation, migration, and invasion. In this review, we summarize recent findings on the roles of MAPK signaling pathways in human disorders, focusing on cancer and neurodegenerative diseases including AD, PD, and ALS.  相似文献   

10.
Class III histone deacetylases (sirtuins) are becoming increasingly recognized as important epigenetic drug targets in cancer and metabolic disorders. As key regulators involved in numerous cellular signalling pathways, sirtuins are also emerging as potential targets in various neurodegenerative diseases such as Alzheimer, Parkinson's disease and others, thus suggesting modulation of sirtuin activity could provide an interesting and novel therapeutic option. In particular, much attention has been raised by neuroprotective effects attributed to SIRT1 activation due to genetically induced sirtuin overexpression or administration of resveratrol, a natural compound found in the skin of red grapes and also in wine. Similarly, also sirtuin inhibitors display benefits in various neuropathologic disease models. In light of the growing interest in sirtuin modulation and with regard to the lack of conclusive data on small molecule activators of sirtuins this review recapitulates the known facts about sirtuins and their relevance in neurodegenerative diseases.  相似文献   

11.
4-hydroxynonenal and neurodegenerative diseases   总被引:12,自引:0,他引:12  
The development of oxidative stress, in which production of highly reactive oxygen species (ROS) overwhelms antioxidant defenses, is a feature of many neurological diseases: ischemic, inflammatory, metabolic and degenerative. Oxidative stress is increasingly implicated in a number of neurodegenerative disorders characterized by abnormal filament accumulation or deposition of abnormal forms of specific proteins in affected neurons, like Alzheimer's disease (AD), Pick's disease, Lewy bodies related diseases, amyotrophic lateral sclerosis (ALS), and Huntington disease. Causes of neuronal death in neurodegenerative diseases are multifactorial. In some familiar cases of ALS mutation in the gene for Cu/Zn superoxide dismutase (SOD1) can be identified. In other neurodegenerative diseases ROS have some, usually not clear, role in early pathogenesis or implications on neuronal death in advanced stages of illness. The effects of oxidative stress on "post-mitotic cells", such as neurons may be cumulative, hence, it is often unclear whether oxidative damage is a cause or consequence of neurodegeneration. Peroxidation of cellular membrane lipids, or circulating lipoprotein molecules generates highly reactive aldehydes among which one of most important is 4-hydroxynonenal (HNE). The presence of HNE is increased in brain tissue and cerebrospinal fluid of AD patients, and in spinal cord of ALS patients. Immunohistochemical studies show presence of HNE in neurofibrilary tangles and in senile plaques in AD, in the cytoplasm of the residual motor neurons in sporadic ALS, in Lewy bodies in neocortical and brain stem neurons in Parkinson's disease (PD) and in diffuse Lewy bodies disease (DLBD). Thus, increased levels of HNE in neurodegenerative disorders and immunohistochemical distribution of HNE in brain tissue indicate pathophysiological role of oxidative stress in these diseases, and especially HNE in formation of abnormal filament deposites.  相似文献   

12.
Cognitive decline is among the most devastating age-related conditions and is rapidly becoming an important cause of disease burdens worldwide. New strategies for the prevention and management of cognitive decline are needed. Resveratrol, a polyphenolic compound, has been found to enhance brain health through multiple signaling pathways. Optimal SIRT1 activation is the most crucial step in the neuroprotection provided by resveratrol against cognitive impairment. This review discusses several recent developments in our understanding of the mechanisms by which resveratrol delay age-related cognitive decline through SIRT1. The regulatory mechanisms include anti-oxidative, anti-inflammatory, anti-apoptotic processes and autophagy regulation, as well as increases in cerebral blood flow and improvements in the plasticity of synaptic pathways. Resveratrol, as well as novel SIRT1 activators, is likely to provide promising therapeutic strategies for impeding cognitive decline, repairing brain functions, and supporting healthy aging.  相似文献   

13.
Disorders caused by mitochondrial respiratory chain deficiency due to mutations in mitochondrial DNA have varied phenotypes but many involve neurological features often associated with cell loss within specific brain regions. These disorders, along with the increasing evidence of decline in mitochondrial function with ageing, have raised speculation that primary changes in mitochondria could have an important role in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence supporting a role for mitochondria in common neurodegenerative diseases comes from studies with the toxin MPP+ and familial PD, which has been shown to involve proteins such as DJ-1 and Pink1 (both of which are predicted to have a role in mitochondrial function and oxidative stress). Mutations within the mitochondrial genome have been shown to accumulate with age and in common neurodegenerative diseases. Mitochondrial DNA haplogroups have also been shown to be associated with certain neurodegenerative conditions. This review covers the primary mitochondrial diseases but also discuss the potential role of mitochondria and mitochondrial DNA mutations in mitochondrial and neurodegenerative diseases, in particular in PD and in AD.  相似文献   

14.
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer''s disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.  相似文献   

15.
Natural polyphenols can exert protective action on a number of pathological conditions including neurodegenerative disorders. The neuroprotective effects of many polyphenols rely on their ability to permeate brain barrier and here directly scavenge pathological concentration of reactive oxygen and nitrogen species and chelate transition metal ions. Importantly, polyphenols modulate neuroinflammation by inhibiting the expression of inflammatory genes and the level of intracellular antioxidants. Parkinson’s disease (PD) is a neurodegenerative disorder characterized by several abnormalities including inflammation, mitochondrial dysfunction, iron accumulation and oxidative stress. There is considerable evidence showing that cellular oxidative damage occurring in PD might result also from the actions of altered production of nitric oxide (NO). Indeed, high levels of neuronal and inducible NO synthase (NOS) were found in substantia nigra of patients and animal models of PD. Here, we evaluate the involvement of NOS/NO in PD and explore the neuroprotective activity of natural polyphenol compounds in terms of anti-inflammatory and antioxidant action. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

16.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD+-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol''s enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.  相似文献   

17.
BackgroundAlzheimer's disease (AD), Parkinson's disease (PD), and age-related macular degeneration (AMD) are common among neurodegenerative diseases, but investigations into novel therapeutic approaches are currently limited. Humanin (HN) is a mitochondrial-derived peptide found in brain tissues of patients with familial AD and has been increasingly investigated in AD and other neurodegenerative diseases.Scope of reviewIn this review, we summarize and discuss the effects of HN on the pathology of neurodegenerative diseases and cognition based on several studies from preclinical to clinical models. The association between cardiac ischemia-reperfusion (I/R) injury and brain are also included. Findings from in vitro studies and those involving mice provide the most fundamental information on the impact of HN and its potential association with clinical studies.Major conclusionsHN plays a considerable role in countering the progression and neuropathology of AD. Inhibition and reduction of oxidative stress and neuroinflammation of the original amyloid hypothesis is the mainstay mechanism. Multiple intracellular mechanisms will be elucidated, including those involved in the anti-apoptotic signaling cascades, the insulin signaling pathway, and mitochondrial function, and especially autophagic activity. These beneficial roles are also found following cardiac I/R injury. Cognitive improvement was found to be related to maintenance of synaptic integrity and neurotransmitter modulation. Small humanin-like peptide 2 demonstrates the neuroprotective effects in PD and AMD via prevention of mitochondrial loss.General significanceComprehensive knowledge of HN effects on cognition and neurodegenerative diseases emphasizes its potential to treat a viable disease, as it ameliorates the pathogenesis of the disease.  相似文献   

18.
19.
Alcoholic fatty liver is associated with inhibition of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), two critical signaling molecules regulating the pathways of hepatic lipid metabolism in animals. Resveratrol, a dietary polyphenol, has been identified as a potent activator for both SIRT1 and AMPK. In the present study, we have carried out in vivo animal experiments that test the ability of resveratrol to reverse the inhibitory effects of chronic ethanol feeding on hepatic SIRT1-AMPK signaling system and to prevent the development of alcoholic liver steatosis. Resveratrol treatment increased SIRT1 expression levels and stimulated AMPK activity in livers of ethanol-fed mice. The resveratrol-mediated increase in activities of SIRT1 and AMPK was associated with suppression of sterol regulatory element binding protein 1 (SREBP-1) and activation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha). In parallel, in ethanol-fed mice, resveratrol administration markedly increased circulating adiponectin levels and enhanced mRNA expression of hepatic adiponectin receptors (AdipoR1/R2). In conclusion, resveratrol treatment led to reduced lipid synthesis and increased rates of fatty acid oxidation and prevented alcoholic liver steatosis. The protective action of resveratrol is in whole or in part mediated through the upregulation of a SIRT1-AMPK signaling system in the livers of ethanol-fed mice. Our study suggests that resveratrol may serve as a promising agent for preventing or treating human alcoholic fatty liver disease.  相似文献   

20.
Neurodegenerative diseases are more and more prevalent in our aging societies. A rapid overview of the etiology of many neurodegenerative diseases like Alzheimer, Parkinson, Huntington disease and amyotrophic lateral sclerosis suggests a tight link with mitochondrial dysfunction. Since it has been recently demonstrated that activation of the SIRT1/PGC-1 pathway, in a metabolic context promotes mitochondrial function, we performed a detailed literature review on the implication of this pathway in neurodegeneration. Interestingly, transgenic mice with impaired PGC-1 expression have neurodegenerative lesions and show behavioural abnormalities. As evidenced from independent investigations, enhanced SIRT1 activity has been demonstrated to protect against axonal degeneration and to decrease the accumulation of amyloid beta peptides, the hallmark of Alzheimer disease, in cultured murine embryonic neurons. In addition, several studies suggest that resveratrol, a specific activator of SIRT1, could have protective effects in animal models of neurodegenerative diseases. Taken together, these results strongly suggest that the modulation of the SIRT1/PGC-1 pathway, which has not been well documented in the central nervous system, could become the cornerstone for new therapeutical approaches to combat neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号