首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungus Fusarium sporotrichioides, capable of producing T-2 toxin (T-2), was grown on irradiated corn kernels remoistened to 22% and kept in atmospheres of different CO2-O2 combinations. The production of T-2 was totally inhibited under 60% CO2-20% O2, whereas only trace amounts were detected when the gas combination was 40% CO2-5% O2. Under all other combinations tested, the amount of T-2 produced was reduced by 25 to 50% as compared with the control. Fungal growth was not inhibited by any of the gas mixtures examined, and the growth rate (measured by direct plating, dilution method, and CO2 production) was almost identical to that in grains kept under air. It is concluded that although F. sporotrichioides is tolerant to high CO2 levels, T-2 formation on corn can be inhibited by CO2 concentrations less than that required to inhibit fungal growth.  相似文献   

2.
The effects of various gaseous environments and temperatures on development of Penicillium martensii NRRL 3612 and production of penicillic acid (PA) were determined. Accumulation of PA in mold-inoculated corn was measured following incubation under air; 20% CO(2), 20% O(2), 60% N(2); 40% CO(2), 20% O(2), 40% N(2); and 60% CO(2), 20% O(2), 20% N(2). Although reduced temperature initially inhibited PA production, at the end of the trial the largest quantity of PA (120 mug/g of corn) was found in air-incubated corn at the lowest test temperature (5 C). Atmospheres enriched with 60% CO(2) reduced PA accumulation below a detectable level at 5 and 10 C after a 4-week incubation period. Spore germination tests were carried out in a liquid growth medium incubated for 16 hr under several test conditions. Germ tube outgrowth at 30 C ranged from 36% in air to 2% in 60% CO(2), whereas no germination was observed in CO(2)-enriched gases at 10 C. When spore respiration rates were measured in air and O(2) in a liquid growth medium, complete removal of CO(2) from the reaction atmosphere did not reduce O(2) uptake.  相似文献   

3.
N Paster  N Lisker    I Chet 《Applied microbiology》1983,45(3):1136-1139
When Aspergillus ochraceus NRRL 3174 was grown under controlled atmospheres with 1 and 5% O2 and without CO2, the amount of ochratoxin produced was the same as that produced by the control colonies. Increasing the O2 level up to 40% reduced ochratoxin production by 75%, whereas at 60% O2, ochratoxin production was enhanced. In atmospheres enriched with 10 or 20% CO2, ochratoxin production was reduced when O2 concentrations were below 20% and enhanced when the O2 concentration was 40 or 60% O2. Ochratoxin production was completely inhibited at 30% CO2 and above, regardless of the O2 level. Colony growth was partially inhibited at 60% CO2, and no growth occurred at 80% CO2 or above. However, when colonies inhibited by 60% CO2 or above were subsequently exposed to air, radial growth, number of sclerotia formed, and the amount of ochratoxin produced were the same as in the control colonies. The results indicate that A. ochraceus is tolerant to CO2 concentrations higher than those required to control storage insects.  相似文献   

4.
A competitive enzyme-linked immunosorbent assay was used to screen for T-2 toxin in Fusarium sporotrichioides -infected corn. The assay detected T-2 toxin in diluted methanol extracts of corn samples at concentrations of 0.05 ng/ml. In infected corn samples, enzyme-linked immunosorbent assay and gas-liquid chromatography estimations of T-2 toxin concentrations were similar.  相似文献   

5.
The range and comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides, i.e., NRRL 3299, NRRL 3510, M-1-1, HPB 071178-13, and F-38, were determined. Lyophilized cultures of the five strains maintained in the International Toxic Fusarium Reference Collection were used to inoculate autoclaved corn kernels. Corn cultures were incubated at 15 degrees C for 21 days and analyzed for trichothecenes by thin-layer chromatography and capillary gas chromatography. All five strains produced T-2 toxin, HT-2 toxin, T-2 triol, and neosolaniol. Two strains also produced T-2 tetraol, and two others produced diacetoxyscirpenol. The highest producer of T-2 toxin (1,300 mg/kg), HT-2 toxin (200 mg/kg), T-2 triol (1.9 mg/kg), and neosolaniol (170 mg/kg) was NRRL 3510, which was originally isolated from millet associated with outbreaks of alimentary toxic aleukia in the USSR. The second highest producer of T-2 toxin (930 mg/kg) was NRRL 3299. The other three strains produced T-2 toxin at levels ranging from 130 to 660 mg/kg. Thus, the five strains differed considerably in the amounts of T-2 toxin and other trichothecenes produced under identical laboratory conditions. These strains are being maintained under optimal conditions for the preservation of Fusarium cultures and are available from the Fusarium Research Center, The Pennsylvania State University, University Park.  相似文献   

6.
The range and comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides, i.e., NRRL 3299, NRRL 3510, M-1-1, HPB 071178-13, and F-38, were determined. Lyophilized cultures of the five strains maintained in the International Toxic Fusarium Reference Collection were used to inoculate autoclaved corn kernels. Corn cultures were incubated at 15 degrees C for 21 days and analyzed for trichothecenes by thin-layer chromatography and capillary gas chromatography. All five strains produced T-2 toxin, HT-2 toxin, T-2 triol, and neosolaniol. Two strains also produced T-2 tetraol, and two others produced diacetoxyscirpenol. The highest producer of T-2 toxin (1,300 mg/kg), HT-2 toxin (200 mg/kg), T-2 triol (1.9 mg/kg), and neosolaniol (170 mg/kg) was NRRL 3510, which was originally isolated from millet associated with outbreaks of alimentary toxic aleukia in the USSR. The second highest producer of T-2 toxin (930 mg/kg) was NRRL 3299. The other three strains produced T-2 toxin at levels ranging from 130 to 660 mg/kg. Thus, the five strains differed considerably in the amounts of T-2 toxin and other trichothecenes produced under identical laboratory conditions. These strains are being maintained under optimal conditions for the preservation of Fusarium cultures and are available from the Fusarium Research Center, The Pennsylvania State University, University Park.  相似文献   

7.
The gaseous environment surrounding parenchyma in woody tissue is low in O2 and high in CO2, but it is not known to what extent this affects respiration or might play a role in cell death during heartwood formation. Sapwood respiration was measured in two conifers and three angiosperms following equilibration to levels of O2 and CO2 common within stems, using both inner and outer sapwood to test for an effect of age. Across all species and tissue ages, lowering the O2 level from 10% to 5% (v/v) resulted in about a 25% decrease in respiration in the absence of CO2, but a non-significant decrease at 10% CO2. The inhibitory effect of 10% CO2 was smaller and only significant at 10% O2, where it reduced respiration by about 14%. Equilibration to a wider range of gas combinations in Pinus strobus L. showed the same effect: 10% CO2 inhibited respiration by about 15% at both 20% and 10% O2, but had no net effect at 5% O2. In an extreme treatment, 1% O2+20% CO2 increased respiration by over 30% relative to 1% O2 alone, suggesting a shift in metabolic response to high CO2 as O2 decreases. Although an increase in respiration would be detrimental under limiting O2, this extreme gas combination is unlikely to exist within most stems. Instead, moderate reductions in respiration under realistic O2 and CO2 levels suggest that within-stem gas composition does not severely limit respiration and is unlikely to cause the death of xylem parenchyma during heartwood formation.  相似文献   

8.
Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium   总被引:6,自引:0,他引:6  
Production of H2 by Azospirillum brasilense under N2-fixing conditions was studied in continuous and batch cultures. Net H2 production was consistently observed only when the gas phase contained CO. Nitrogenase activity (C2H2 reduction) and H2 evolution (in the presence of 5% CO) showed a similar response to O2 and were highest at 0.75% dissolved O2. Uptake hydrogenase activity, ranging from 0.3 to 2.5 mumol H2/mg protein per hour was observed in batch cultures under N2. Such rates were more than sufficient to recycle nitrogenase-produced H2. Tritium-exchange assay showed that H2 uptake was higher under Ar than under N2. Uptake hydrogenase was strongly inhibited by CO and C2H2. Cyclic GMP inhibited both nitrogenase and uptake hydrogenase activities.  相似文献   

9.
Lai YL  Chiou WY  Lu FJ 《Life sciences》2002,70(11):1271-1277
Antioxidants attenuate hyperpnea-induced airway constriction. It was hypothesized that this type of airway constriction is closely related to reactive oxygen species (ROS). However, there is no direct evidence of an increase in ROS during or right after the course of hyperpnea. To detect ROS production induced by hyperpnea, forty one guinea pigs were divided into four groups: control; control with 95% O2-5% CO2; hyperpnea with 95% air-5% CO2; and hyperpnea with 95% O2-5% CO2. Three minutes following hyperpnea or at the equivalent time, we obtained bronchoalveolar lavage (BAL) and measured its chemiluminescence (CL) counts. In addition, hyperpnea with 95% O2-5% CO2 gas mixture was carried out and BAL was collected 3 minutes after the hyperpnea in an additional forty animals. We measured CL counts in BAL samples before and after the treatments of the following ROS scavenger(s) or saline in vitro: control (saline); superoxide dismutase (SOD); catalase; dimethylthiourea (DMTU); and SOD+catalase+DMTU. Hyperpnea with 95% O2-5% CO2, but not with 95% air-5% CO2, gas mixture induced significant increase in t-butyl hydroperoxide-initiated CL counts, which were inhibited by DMTU, catalase, or SOD in vitro. Our data suggest that hyperpnea with a 95% O2-5% CO2, but not with 95% air-5% CO2, gas mixture induced an increase in ROS production.  相似文献   

10.
The effect of the partial pressure of O(2) and CO(2) on the acid protease production in solid state fermentation by Aspergillus niger on wheat bran was studied. A fermentation system was used, which allowed on-line reactor measurements and continuous data acquisition of pH, temperature, gas flow, pressure drop and CO(2) production. Six paired combinations of CO(2) and O(2) concentrations were studied. The results showed a direct relationship between pressure drop, production of CO(2) and temperature increase. The pH evolution patterns were similar in all cases but different if the measurements were made on-line or on a liquid homogenate of the fermented substrate. Acid protease production was increased when the gas had 4% CO(2), (vol/vol), and it reached its highest level, a 43% increase over air, with a mixture of 4% CO(2) and 21% O(2). The protease production was strongly related to the mold metabolic activity as represented by the total CO(2) evolved.  相似文献   

11.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

12.
To examine the potential use of synthesis gas as a carbon and energy source in fermentation processes, Rhodospirillum rubrum was cultured on synthesis gas generated from discarded seed corn. The growth rates, growth and poly-beta-hydroxyalkanoates (PHA) yields, and CO oxidation/H(2) evolution rates were evaluated in comparison to the rates observed with an artificial synthesis gas mixture. Depending on the gas conditioning system used, synthesis gas either stimulated or inhibited CO-oxidation rates compared to the observations with the artificial synthesis gas mixture. Inhibitory and stimulatory compounds in synthesis gas could be removed by the addition of activated charcoal, char-tar, or char-ash filters (char, tar, and ash are gasification residues). In batch fermentations, approximately 1.4 mol CO was oxidized per day per g cell protein with the production of 0.75 mol H(2) and 340 mg PHA per day per g cell protein. The PHA produced from R. rubrum grown on synthesis gas was composed of 86% beta-hydroxybutyrate and 14% beta-hydroxyvalerate. Mass transfer of CO into the liquid phase was determined as the rate-limiting step in the fermentation.  相似文献   

13.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

14.
Schwabe  M  Krämer  J 《Mycotoxin Research》1995,11(1):48-52
Mycotoxin Research - The production of T-2 Toxin by two strains ofFusarium sporotrichioides at high (0.995), medium (0.970) and low (0.945) water activity (aw) was investigated. The organisms were...  相似文献   

15.
H2 production by the human protozoan parasite Trichomonas vaginalis was monitored continuously under a mobile gas phase using a membrane-inlet mass spectrometer. Simultaneous and continuous measurement of dissolved H2, O2 and CO2 indicated that H2 evolution was inhibited at levels of O2 (less than 0.25 microM) undetectable by the technique, whereas CO2 production was stimulated. Respiration was not stimulated by admitting H2 to the gas phase. Metronidazole inhibited both H2 and CO2 production. Values of K1 for inhibition of H2 formation in strain ATCC 30001 (metronidazole sensitive) of 0.16 mM and in strain 85 (metronidazole resistant) of 1.0 mM were obtained. These data suggest that metronidazole not only competes with protons as electron acceptor but that the drug itself or a product of reduction actively inhibits some hydrogenosomal enzyme or electron carrier involved in H2 production. Under these conditions metronidazole inhibition leads to irreversible loss of cell motility.  相似文献   

16.
Entamoeba histolytica required CO2 for growth in axenic culture while growth was inhibited by H2. The organism was tolerant to 5% O2 in the gas phase and it was able to detoxify products of O2 reduction in the medium. The ameba did not require a negative oxidation-reduction potential for axenic growth. However, little or no free O2 was present in media exposed to 5% O2 in the gas phase. Growth was improved by adding yeast extract to the medium.  相似文献   

17.
Two bacteriocinogenic strains of Pediococcus parvulus and one bacteriocinogenic Enterococcus mundtii strain were evaluated for their potential to control the growth of Listeria monocytogenes on refrigerated, modified atmosphere (MA) stored mungbean sprouts. These three strains, which were isolated from minimally-processed vegetables, were shown to grow in culture broth at 4, 8, 15 and 30 degrees C. However, only Ent. mundtii was capable of bacteriocin production at 4-8 degrees C. Examination of the growth of these strains on agar under 1.5% O2 in combination with 0, 5, 20 or 50% CO2 revealed significantly higher maximum specific growth rates for Ent. mundtii than for Pediococcus parvulus at CO2 concentrations below 20%, which are relevant for MA-storage of vegetables. Enterococcus mundtii was subsequently evaluated for its ability to control the growth of L. monocytogenes on vegetable agar and fresh mungbean sprouts under 1.5% O2/20% CO2/78.5% N2 at 8 degrees C. The growth of L. monocytogenes was inhibited by bacteriocinogenic Ent. mundtii on sterile vegetable-medium but not on fresh produce. However, mundticin, the bacteriocin produced by Ent. mundtii, was found to have potential as a biopreservative agent for MA-stored mungbean sprouts when used in a washing step or a coating procedure.  相似文献   

18.
Ethylene production in relation to O2 partial pressure of whole pear fruit stored at 2C could be described by a Michaelis-Menten equation. This was indicated by the use of a gas exchange model. The maximum ethylene production rate was strongly inhibited while the KmO2 value (1.25 kPa) was not affected by elevated CO2. Ethylene production was also inhibited by 1-MCP, an inhibitor of ethylene perception. The reduction in ethylene production by CO2 was similar for 1-MCP treated and untreated pears. Elevated CO2, therefore, must have had an influence on ethylene production other than through ethylene perception. A possible site of inhibition by CO2 is the conversion of ACC to ethylene. The O2 uptake rate in relation to O2 partial pressure of whole pear fruit could be described by a Michaelis-Menten equation. The O2 uptake rate was inhibited by elevated CO2 at a level similar to the inhibition of ethylene production. Again the KmO2 value (0.68 kPa) was not affected by CO2. Using 1-MCP treatments it was shown that there was no direct effect of inhibited ethylene production on O2 uptake rate.  相似文献   

19.
Glucose-supported O2 uptake in the filarial nematode Brugia pahangi was partially inhibited by antimycin A (30-40%), with the remaining activity being sensitive to o-hydroxydiphenyl or salicylhydroxamic acid (SHAM). The production of CO2 by B. pahangi in the presence of D-glucose was stimulated by O2; the stimulation of CO2; the stimulation of CO2 production was sensitive to antimycin A. The O2 dependencies of respiration showed that the apparent O2 affinity for B. pahangi was diminished in the presence of antimycin A; O2 thresholds for inhibition of respiration were observed which showed that the alternative electron transport pathway was less sensitive to inhibition at elevated O2 concentrations. H2O2 production and its excretion could be detected in whole B. pahangi; higher rates were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The effects of inhibitors on H2O2 production suggest two sites of H2O2 production, one associated with the classical antimycin A-sensitive pathway, the other with the alternative respiratory pathway. The similarity in the O2 dependencies of H2O2 production and respiration may indicate that H2O2 production is involved in O2-mediated toxicity. Succinate and malate respiring sub-mitochondrial particles of B. pahangi produced O2.- radicals at a site on the antimycin A-sensitive respiratory pathway. Inhibition of the alternative electron pathway by SHAM was unusual; sub-millimolar concentrations markedly stimulated respiration, H2O2 production and O2.- production by 30, 20 and 25%, respectively, whereas higher concentrations (greater than 2.5 mM) inhibited respiration by 75% and H2O2 and O2.- production by up to 85%.  相似文献   

20.
In order to see the effect of CO(2) inhibition resulting from the use of pure oxygen, we carried out a comparative fed-batch culture study of polyhydroxybutyric acid (PHB) production by Ralstonia eutropha using air and pure oxygen in 5-L, 30-L, and 300-L fermentors. The final PHB concentrations obtained with pure O(2) were 138.7 g/L in the 5-L fermentor and 131.3 g/L in the 30-L fermentor, which increased 2.9 and 6.2 times, respectively, as compared to those obtained with air. In the 300-L fermentor, the fed-batch culture with air yielded only 8.4 g/L PHB. However, the maximal CO(2) concentrations in the 5-L fermentor increased significantly from 4.1% (air) to 15.0% (pure O(2)), while it was only 1.6% in the 30-L fermentor with air, but reached 14.2% in the case of pure O(2). We used two different experimental methods for evaluating CO(2) inhibition: CO(2) pulse injection and autogenous CO(2) methods. A 10 or 22% (v/v) CO(2) pulse with a duration of 3 or 6 h was introduced in a pure-oxygen culture of R. eutropha to investigate how CO(2) affects the synthesis of biomass and PHB. CO(2) inhibited the cell growth and PHB synthesis significantly. The inhibitory effect became stronger with the increase of the CO(2) concentration and pulse duration. The new proposed autogenous CO(2) method makes it possible to place microbial cells under different CO(2) level environments by varying the gas flow rate. Introduction of O(2) gas at a low flow rate of 0.42 vvm resulted in an increase of CO(2) concentration to 30.2% in the exit gas. The final PHB of 97.2 g/L was obtained, which corresponded to 70% of the PHB production at 1.0 vvm O(2) flow rate. This new method measures the inhibitory effect of CO(2) produced autogenously by cells through the entire fermentation process and can avoid the overestimation of CO(2) inhibition without introducing artificial CO(2) into the fermentor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号