首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantioselective hydrolysis of eight racemic styrene oxide derivatives has been investigated by using the recombinant cell containing epoxide hydrolase (EH) of Caulobacter crescentus. Some styrene oxide derivatives were hydrolyzed via enantioconvergent manner so that enantiopure diol products could be prepared with a 100% theoretical yield. The recombinant cell containing C. crescentus EH exhibited an ability to hydrolyze racemic p-chlorostyrene oxide the most enantioconvergently, thus affording the formation of the corresponding (R)-diol with enantiomeric excess (ee) as high as 95% and a 72% yield in preparative-scale (16.8 g/l) bioconversion.  相似文献   

2.
Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.  相似文献   

3.
An enantioconvergent biotransformation of racemic styrene oxide by using two recombinant microbial epoxide hydrolases (EHs) in one pot has been investigated to prepare enantiopure vicinal diols. The recombinant whole cell possessing EH gene from Aspergillus niger LK or Rhodotorula glutinis exhibited a complementary enantioselectivity and regioselectivity, compared to the recombinant cell containing Caulobacter crescentus EH gene. When two recombinant microbial EHs were used in combination, 1.3 g of enantiopure (R)-1,2-phenylethandiol with more than 90% enantiopurity and 95% overall yield was obtained from 1.2 g of racemic styrene oxide in a preparative-scale batch enantioconvergent biotransformation.  相似文献   

4.
Bacillus sp. Z018, a novel strain producing epoxide hydrolase, was isolated from soil. The epoxide hydrolase catalyzed the stereospecific hydrolysis of (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol. Epoxide hydrolase from Bacillus sp. Z018 was inducible, and (R)-phenyl glycidyl ether was able to act as an inducer. The fermentation conditions for epoxide hydrolase were 35°C, pH 7.5 with glucose and NH4Cl as the best carbon and nitrogen source, respectively. Under optimized conditions, the biotransformation yield of 45.8% and the enantiomeric excess of 96.3% were obtained for the product (R)-3-phenoxy-1,2-propanediol.  相似文献   

5.
饶俊超  张荣珍  徐岩 《微生物学报》2020,60(11):2450-2460
[目的] 利用木聚糖为辅助底物加强手性催化反应中的辅酶循环,构建来源于近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(S)-羰基还原酶II(SCRII)、枯草芽孢杆菌(Bacillussp.)YX-1葡萄糖脱氢酶突变体Ala258Phe/GDH和里氏木霉(Trichoderma reesei)Rut C-30木聚糖酶(XYN2)在大肠杆菌(Escherichia coli)BL21(DE3)中的融合表达体系,高效合成(S)-苯乙二醇。[方法] 调节3种酶编码基因在pET-28a载体上的位置,运用重叠延伸PCR技术,构建了E.coli/pET-SCRII-A258F-XYN2和E.coli/pET-A258F-SCRII-XYN2两种重组菌,研究了其合成(S)-苯乙二醇的最适反应条件。[结果] 重组菌株E.coli/pET-SCRII-A258F-XYN2在底物2-羟基苯乙酮与辅助底物木聚糖的比例为1:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达98.8%(W/W);而重组菌株E.coli/pET-A258F-SCRII-XYN2在底物与辅助底物的比例为2:1、35℃、pH为7.0条件下,(S)-苯乙二醇的产率达95.6%(W/W),两者合成产物的光学纯度均>99%。[结论] 通过构建3种酶的融合表达体系,成功将木聚糖酶和葡萄糖脱氢酶突变体介导的辅酶再生循环体系引入不对称生物合成反应,提高了手性转化效率,为将大自然中丰富的木聚糖用于手性催化奠定了较扎实的研究基础。  相似文献   

6.
Yoo SS  Park S  Lee EY 《Biotechnology letters》2008,30(10):1807-1810
The reaction medium was optimized to accomplish epoxide hydrolase-catalyzed, batch enantioselective hydrolysis of racemic styrene oxide at high initial substrate concentrations. The recombinant Pichia pastoris containing the epoxide hydrolase gene of Rhodotorula glutinis was used as the biocatalyst. Enantiopure (S)-styrene oxide with 98% ee was obtained with 41% yield (maximum yield = 50%) from 1.8 M racemic styrene oxide at pH 8.0, 4 degrees C in the presence of 40% (v/v) Tween 20 and 5% (v/v) glycerol.  相似文献   

7.
The cDNA of a marine fish microsomal epoxide hydrolase (mEH) gene from Mugil cephalus was cloned by rapid amplification of cDNA ends (RACE) techniques. The homology model for the mEH of M. cephalus showed a characteristic structure of α/β-hydrolase-fold main domain with a lid domain over the active site. The characteristic catalytic triad, consisting of Asp(238), His(444), and Glu(417), was highly conserved. The cloned mEH gene was expressed in Escherichia coli and the recombinant mEH exhibited (R)-preferred hydrolysis activity toward racemic styrene oxide. We obtained enantiopure (S)-styrene oxide with a high enantiopurity of more than 99% enantiomeric excess and yield of 15.4% by batch kinetic resolution of 20 mM racemic styrene oxide.  相似文献   

8.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

9.
【目的】通过 (R) - 和(S) -羰基还原酶在大肠杆菌中偶联,实现了一步法制备(S)-苯乙二醇的生物转化过程。【方法】将来源于近平滑假丝酵母(Candida parapsilosis CCTCC M203011)的(R)- 羰基还原酶基因(rcr)和(S) -羰基还原酶基因(scr)串联于共表达载体pETDuetTM-1上。重组质粒pETDuet-rcr-scr转化稀有密码子优化型菌株Escherichia coli Rosetta,获得酶偶联重组菌株E. coli Rosetta / pETDuet-rcr-scr。当重组菌体培养至OD600 0.6-0.8时,添加终浓度1 mmol/L IPTG,30℃诱导蛋白表达10 h。【结果】SDS-PAGE结果表明(R)- 和(S) -羰基还原酶均明显表达,它们的相对分子质量分别为37 kDa和30 kDa。重组菌生物转化结果表明:在pH7.0的磷酸缓冲液中,添加5 mmol/L Zn2+时,获得产物(S)-苯乙二醇,产物光学纯度为91.3% e.e.,产率为75.9%。【讨论】采用分子重组技术成功整合了两种氧化还原酶的催化功能,实现了(S)- 苯乙二醇的一步法转化,为简化手性醇制备途径提供了一条崭新的思路。  相似文献   

10.
Enantioselective hydrolysis for the production of chiral styrene oxide was investigated using the epoxide hydrolase activity of a newly isolatedRhodosporidium kratochvilovae SYU-08. The effects of reaction prameters—buffer type, pH, temperature, initial substrate concentrations, phenyl-1,2-ethanediol concentrations on hydrolysis rate, and enantioselectivity—were analyzed. Optically active (S)-styrene oxide with an enantiomeric excess higher than 99 % was obtained from its racemate with a yield of 38 % (theoretically 50% maximum yield) from an initial concentration of 80 mM.  相似文献   

11.
Previously, we reported that ten strains belonging to Erythrobacter showed epoxide hydrolase (EHase) activities toward various epoxide substrates. Three genes encoding putative EHases were identified by analyzing open reading frames of Erythrobacter litoralis HTCC2594. Despite low similarities to reported EHases, the phylogenetic analysis of the three genes showed that eeh1 was similar to microsomal EHase, while eeh2 and eeh3 could be grouped with soluble EHases. The three EHase genes were cloned, and the recombinant proteins (rEEH1, rEEH2, and rEEH3) were purified. The functionality of purified proteins was proved by hydrolytic activities toward styrene oxide. EEH1 preferentially hydrolyzed (R)-styrene oxide, whereas EEH3 preferred to hydrolyze (S)-styrene oxide, representing enantioselective hydrolysis of styrene oxide. On the other hand, EEH2 could hydrolyze (R)- and (S)-styrene oxide at an equal rate. The optimal pH and temperature for the EHases occurred largely at neutral pHs and 40–55 °C. The substrate selectivity of rEEH1, rEEH2, and rEEH3 toward various epoxide substrates were also investigated. This is the first representation that a strict marine microorganism possessed three EHases with different enantioselectivity toward styrene oxide.  相似文献   

12.
A recombinant yeast Pichia pastoris carrying the gene encoding epoxide hydrolase (EH) of Rhodotorula glutinis was constructed and used for producing (S)-styrene oxide by enantioselective hydrolysis of racemic mixtures of styrene oxides. The EH gene was obtained by PCR amplification of cDNA of R. glutinis and integrated into the chromosomal DNA of P. pastoris to express EH under the control of AOX promoter. The recombinant yeast has a high hydrolytic activity toward (R)-styrene oxide as 358 nmol min−1 (mg cell)−1, which is about 10-fold higher than that of wild type R. glutinis. When kinetic resolution was conducted by the recombinant yeast at a high initial epoxides concentration of 526 mM that constitutes an epoxide–water two-liquid phase, chiral (S)-styrene oxide with an enantiomeric excess (e.e.) higher than 98% was obtained as 36% yield (theoretical, 50%) at 16 h.  相似文献   

13.

Objectives

To prepare (R)-phenyl-1,2-ethanediol ((R)-PED) with high enantiomeric excess (ee p) and yield from racemic styrene oxide (rac-SO) at high concentration by bi-enzymatic catalysis.

Results

The bi-enzymatic catalysis was designed for enantioconvergent hydrolysis of rac-SO by a pair of novel epoxide hydrolases (EHs), a Vigna radiata EH3 (VrEH3) and a variant (AuEH2A250I) of Aspergillus usamii EH2. The simultaneous addition mode of VrEH3 and AuEH2A250I, exhibiting the highest average turnover frequency (aTOF) of 0.12 g h?1 g?1, was selected, by which rac-SO (10 mM) was converted into (R)-PED with 92.6% ee p and 96.3% yield. Under the optimized reaction conditions: dry weight ratio 14:1 of VrEH3-expressing E. coli/vreh3 to AuEH2A250I-expressing E. coli/Aueh2 A250I and reaction at 20 °C, rac-SO (10 mM) was completely hydrolyzed in 2.3 h, affording (R)-PED with 98% ee p. At the weight ratio 0.8:1 of rac-SO to two mixed dry cells, (R)-PED with 97.4% ee p and 98.7% yield was produced from 200 mM (24 mg/ml) rac-SO in 10.5 h.

Conclusions

Enantioconvergent hydrolysis of rac-SO at high concentration catalyzed by both VrEH3 and AuEH2A250I is an effective method for preparing (R)-PED with high ee p and yield.
  相似文献   

14.
Abstract

To develop an efficient biocatalyst to produce optically active (S)-phenyl ethanediol (PED), a carbonyl reductase SCRII and glucose 6-phosphate dehydrogenase were coexpressed intracellularly in Pichia pastoris. The recombinant enzyme PpSCRII was purified with a specific activity of 8.32 U mg?1, over 36% higher than that of Escherichia coli SCRII. The recombinant cells P. pastoris/SCRIIG catalyzed the reduction of 2-hydroxyacetophenone to give (S)-PED with optical purity of >99% in a yield of 96.3%. The yield was improved by 19.9% and 25.7% over E. coli BL21/SCRII and Candida parapsilosis, respectively, when the reaction duration was shorted from 48 h to 24 h. When using glucose 50 g L?1 as co-substrate, these P. pastoris/SCRIIG cells could be reused ten times and the optical purity and yield of (S)-PED kept at >99% enantiomeric excess and >85%, respectively.  相似文献   

15.
An (R)-specific carbonyl reductase from Candida parapsilosis CCTCCM203011 (CprCR) was shown to catalyze the asymmetric reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol (PED), which is a critical chiral building block in organic synthesis. The gene (rcr) encoding CprCR was cloned based on the amino acid sequences of tryptic fragments of the enzyme. Sequence analysis revealed that rcr is comprised of 1008 nucleotides encoding a 35 977 Da polypeptide, and shares similarity to proteins of the medium-chain dehydrogenase/reductase (MDR) superfamily. Recombinant rcr expressed in Escherichia coli showed a specific 2-hydroxyacetophenone-reducing activity. Using rcr expressing cells, (R)-PED was obtained by asymmetric reduction, which is complementary in enantiomeric configuration to (S)-PED obtained by using whole cells of C. parapsilosis. After optimization of reaction conditions, (R)-PED was produced at 95.5% enantiomeric excess with a yield of 92.6% when isopropanol was used for cofactor regeneration.  相似文献   

16.
The gene which encodes (R)-specific carbonyl reductase (rCR) from Candida parapsilosis CCTCC M203011 was cloned, sequenced and compared with genes from the GenBank. The results indicated that rCR gene was 1011 bp, encoding a protein of 336 amino acids with a molecular weight of 35.9 kDa, and its nucleotide sequence showed 99% similarity to those of other members of the alcohol dehydrogenase superfamily. The rCR gene could express in recombinant strain Escherichia coli JM109, and the expression plasmid could produce (R)-1-pheny-1,2-ethanediol (100% e.e., 80.14% yield) from β-hydroxyacetophenone without any additive to regenerate NAD+ from NADH. __________ Translated from Microbiology, 2006, 33(4): 112–118 [译自: 微生物学通报]  相似文献   

17.
Isolates representing Cryptococcus laurentii and Cryptococcus podzolicus, originating from soil of a heathland indigenous to South Africa, were screened for the presence of enantioselective epoxide hydrolases for 2,2-disubstituted epoxides. Epoxide hydrolase activity for the 2,2-disubstituted epoxide (+/-)-2-methyl-2-pentyl oxirane was found to be abundantly present in all isolates. The stereochemistry of the products formed by the epoxide hydrolase enzymes from isolates belonging to the two species (11 isolates representing C. laurentii and 23 isolates representing C. podzolicus) was investigated. The enantiopreferences of the epoxide hydrolases for 2,2-disubstituted epoxides of these two species were found to be opposite. All strains of C. laurentii preferentially hydrolysed the (S)-epoxides while all C. podzolicus isolates preferentially hydrolysed the (R)-epoxides of (+/-)-2,2-disubstituted epoxides. These findings indicate that the stereochemistry of the products formed from 2,2-disubstituted epoxides by the epoxide hydrolase enzymes of these yeasts should be evaluated as additional taxonomic criterion within the genus Cryptococcus. Also, the selectivity of some epoxide hydrolases originating from isolates of C. podzolicus was high enough to be considered for application in biotransformations for the synthesis of enantiopure epoxides and vicinal diols.  相似文献   

18.
Several new microorganisms have been isolated from soil samples with high epoxide hydrolase activity toward ethyl 3,4-epoxybutyrate. Screening was performed by enrichment culture on alkenes as sole carbon source, followed by chiral gas chromatography. Eight strains were discovered with enantioselectivity from moderate to high level and identified as bacterial and yeast species. Cells were cultivated under aerobic condition at 30°C using glucose as carbon source and resting cells were used as biocatalysts for kinetic resolution of ethyl 3,4-epoxybutyrate. Among isolated microorganisms, Acinetobacter baumannii showed highest enantioselectivity for (S)-enantiomer, resulting in (R)-ethyl-3,4-epoxybutyrates (>99%ee, 46% yield). It is the first report on the fact that epoxide hydrolases originating from bacterial species of A. baumannii was applied to kinetic resolution of ethyl 3,4-epoxybutyrate in order to obtain enantiopure high-value-added (R)-ethyl-3,4-epoxybutyrate.  相似文献   

19.
在水/有机溶剂双相反应体系中,研究了来源于西梅的(R)-醇腈酶催化酮与丙酮醇腈合成(R)-酮醇腈的立体选择性转氰反应.系统探讨了不同酶源、酶粉颗粒大小、底物浓度、两底物配比、酶浓度和底物结构对转氰反应的影响.结果发现西梅醇腈酶能高效催化三甲基硅酮与丙酮醇腈的立体选择性转氰.酶粉颗粒大小以直径0.3~0.45 mm为优,底物浓度以21 mmol/L左右为佳,底物丙酮醇腈与三甲基硅酮摩尔浓度比以2∶1为宜,酶浓度以60.9 g/L左右为好.西梅醇腈酶对3, 3-二甲基-2-丁酮几乎没有催化活性,而对其硅结构类似物三甲基硅酮却具有非常高的立体选择性和催化活性,在上述优化反应条件下反应24 h的底物转化率和产物光学纯度均高达99%以上,表明底物中的硅原子对西梅醇腈酶的催化活性有非常显著的促进作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号