首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nontransformed cultures of vascular smooth muscle cells proliferate until they form a confluent sheet of cells. Subsequently, the cells become reorganized to form multicellular nodules that are loosely attached to the substrate. The formation of nodules is facilitated by the addition of medium conditioned by nodular cultures. Nodulation is inhibited by the addition of fibronectin. Fibronectins derived from monolayer culture conditioned medium or from plasma are maximally effective while fibronectin isolated from nodular cell conditioned medium is inactive. Analysis by NaDodSO4-polyacrylamide gel electrophoresis reveals that the nodular cell fibronectin has a molecular weight that is about 20-30 kd less than that of monolayer cell fibronectin. Further, nodular cell conditioned medium contains an activity that can convert both plasma fibronectin and monolayer cell fibronectin to the lower molecular weight correlated with the loss of biological activity.  相似文献   

2.
3.
4.
5.

Background and Methodology

Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P)H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins.

Principal Findings

All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain.

Conclusions

Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes.  相似文献   

6.
7.
We have measured uptake of 3H-hexoses into diploid human cells by exposing them to brief pulses of isotopic sugar during the log-growth, subconfluent-growth, and confluent-growth (contact inhibited) phases of the strain HSWP derived from human skin. 3H-deoxyglucose appears to be taken up three times faster than 3H-glucose. After exposure to 3H-glucose for longer than one minute, the cells excrete ~70% of the isotope into the medium as lactate. If lactate production (and hence excretion) is abolished by treating the cells with iodoacetic acid or dinitrofluorobenzene, neither of which inhibits transport, the uptake of 3H-glucose is found to be in fact somewhat larger than that of 3H-deoxyglucose. If cells are deprived of glucose for 24 hours, apparent uptake of 3H-glucose is enhanced 10-fold or more. This latter increase is accounted for by 2- to 3-fold enhancement of true transport plus retention of > 90% of the radioactivity, since little lactate is formed or excreted in glucose-deprived cells. Deoxyglucose, galactose, or pyruvate when present during glucose deprivation each have quantitatively different effects on the cells' capacity to produce lactate from a short pulse of glucose, but none of them prevents the enhancement of hexose transport. After restoration of 5 mM glucose to starved cells, their metabolism returns to normal (in the sense that ~70% of the glucose taken up in a pulse is again excreted as lactate), with a half-time of 0.5 hour; but the transport of hexoses returns to control levels much more slowly, with a half-time of ~6 hours. The two processes appear to be independently regulated.  相似文献   

8.
9.
Glucose is the physiological stimulus for insulin secretion in pancreatic beta cells. The uptake and phosphorylation of glucose initiate and control downstream pathways, resulting in insulin secretion. However, the temporal coordination of these events in beta cells is not fully understood. The recent development of the FLII(12)Pglu-700μ-δ6 glucose nanosensor facilitates real-time analysis of intracellular glucose within a broad concentration range. Using this fluorescence-based technique, we show the shift in intracellular glucose concentration upon external supply and removal in primary mouse beta cells with high resolution. Glucose influx, efflux, and metabolism rates were calculated from the time-dependent plots. Comparison of insulin-producing cells with different expression levels of glucose transporters and phosphorylating enzymes showed that a high glucose influx rate correlated with GLUT2 expression, but was largely also sustainable by high GLUT1 expression. In contrast, in cells not expressing the glucose sensor enzyme glucokinase glucose metabolism was slow. We found no evidence of oscillations of the intracellular glucose concentration in beta cells. Concomitant real-time analysis of glucose and calcium dynamics using FLII(12)Pglu-700μ-δ6 and fura-2-acetoxymethyl-ester determined a glucose threshold of 4mM for the [Ca(2+)](i) increase in beta cells. Indeed, a glucose concentration of 7mM had to be reached to evoke large amplitude [Ca(2+)](i) oscillations. The K(ATP) channel closing agent glibenclamide was not able to induce large amplitude [Ca(2+)](i) oscillations in the absence of glucose. Our findings suggest that glucose has to reach a threshold to evoke the [Ca(2+)](i) increase and subsequently initiate [Ca(2+)](i) oscillations in a K(ATP) channel independent manner.  相似文献   

10.
Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells.  相似文献   

11.
Degranulation in RBL-2H3 cells: regulation by calmodulin pathway   总被引:1,自引:0,他引:1  
Involvement of the calmodulin pathway in Ca2+-induced degranulation was evaluated in RBL-2H3 mast cells. Pretreatment of RBL-2H3 cells with a calmodulin antagonist, W-13, blocked ionomycin-dependent release of beta-hexosaminidase into the supernatant, although W-13 treatment alone slightly but significantly increased the release. Ca2+/calmodulin activates various protein kinases and phosphatases including myosin-light chain kinase (MLCK), calmodulin-dependent protein kinases (CaMKs), and calcineurin. When RBL-2H3 cells were pretreated with a MLCK inhibitor, ML-7, or a CaMKs inhibitor, KN-93, the ionomycin-dependent release of beta-hexosaminidase into the supernatant was inhibited. In addition, pretreatment with calcineurin inhibitors, cyclosporin A and FR901725, resulted in blockage of the ionomycin-dependent release of beta-hexosaminidase into the supernatant. Our results indicate that Ca2+/calmodulin, activated calmodulin, is indispensable for Ca2+-induced degranulation, and that within the calmodulin pathways, at least MLCK, CaMKs and calcineurin positively regulate the release of granules initiated by increasing cytosolic Ca2+ concentrations in RBL-2H3 cells.  相似文献   

12.
Hypoglycemia is associated with increased risk of cardiovascular adverse clinical outcomes. There is evidence that impaired glucose tolerance (IGT) is associated with cardiovascular morbidity and mortality. Whether IGT individuals have asymptomatic hypoglycemia under real-life conditions that are related to early atherosclerosis is unknown. To this aim, we measured episodes of hypoglycemia during continuous interstitial glucose monitoring (CGM) and evaluated their relationship with early manifestation of vascular atherosclerosis in glucose tolerant and intolerant individuals. An oral glucose tolerance test (OGTT) was performed in 79 non-diabetic subjects. Each individual underwent continuous glucose monitoring for 72 h. Cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. IGT individuals had a worse cardiovascular risk profile, including higher IMT, and spent significantly more time in hypoglycemia than glucose-tolerant individuals. IMT was significantly correlated with systolic (r = 0.22; P = 0.05) and diastolic blood pressure (r = 0.28; P = 0.01), total (r = 0.26; P = 0.02) and LDL cholesterol (r = 0.27; P = 0.01), 2-h glucose (r = 0.39; P<0.0001), insulin sensitivity (r = −0.26; P = 0.03), and minutes spent in hypoglycemia (r = 0.45; P<0.0001). In univariate analyses adjusted for gender, minutes spent in hypoglycemia were significantly correlated with age (r = 0.26; P = 0.01), waist circumference (r = 0.33; P = 0.003), 2-h glucose (r = 0.58; P<0.0001), and 2-h insulin (r = 0.27; P = 0.02). In a stepwise multivariate regression analysis, the variables significantly associated with IMT were minutes spent in hypoglycemia (r2 = 0.252; P<0.0001), and ISI index (r2 = 0.089; P = 0.004), accounting for 34.1% of the variation. Episodes of hypoglycemia may be considered as a new potential cardiovascular risk factor for IGT individuals.  相似文献   

13.
14.

Aim

Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D). It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or T2D.

Methods

Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35), IGT (n = 45), or NGT (n = 43). Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL)-6, retinol-binding protein 4 (RBP4), monocyte chemoattractant protein (MCP)-1, vaspin, progranulin, and soluble leptin receptor (sOBR) were measured by ELISAs.

Results

Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group.

Conclusion

Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.  相似文献   

15.
Natural killer (NK) cell degranulation in response to virus-infected cells is triggered by interactions between invariant NK cell surface receptors and their ligands on target cells. Although HIV-1 Vpr induces expression of ligands for NK cell activation receptor, NKG2D, on infected cells, this is not sufficient to promote lytic granule release. We show that triggering the NK cell coactivation receptor NK-T- and -B cell antigen (NTB-A) alongside NKG2D promotes NK cell degranulation. Normally, NK cell surface NTB-A binds to NTB-A on CD4+ T cells. However, HIV-1 Vpu downmodulates NTB-A on infected T cells. Vpu associates with NTB-A through its transmembrane region without promoting NTB-A degradation. Cells infected with HIV-1 Vpu mutant elicited at least 50% more NK cells to degranulate than wild-type virus. Moreover, NK cells have a higher capacity to lyse HIV-infected cells with a mutant Vpu. Thus, Vpu downmodulation of NTB-A protects the infected cell from lysis by NK cells.  相似文献   

16.
17.

Background

Secondary treatment of arteriosclerosis may be applicable for the primary prevention of atherosclerosis in diabetic patients. This prospective, 2-year follow-up study was designed to determine the efficacy and safety of antiplatelet therapy in the prevention of atherosclerosis of diabetic subjects.

Methods

Patients with type 2 diabetes and arteriosclerosis obliterans from the Eastern Asian countries were registered online and randomly assigned either to the aspirin group (81–100 mg/day) or the cilostazol group (100–200 mg/day) in this international, 2-year, prospective follow-up interventional study.

Results

The primary study endpoint was changes in right and left maximum intima-media thickness of the common carotid artery. Secondary endpoints include changes in right and left maximum intima-media thickness of the internal carotid artery; semiquantitative evaluation of cerebral infarction by magnetic resonance imaging; cardiovascular events including sudden death, stroke, transient cerebral ischemic attacks, acute myocardial infarction, angina, and progression of arteriosclerosis obliterans; overall death; withdrawal; and change in ankle-brachial pressure index.

Conclusion

This is the first study to use an online system that was developed in Asian countries for pooling data from an international clinical trial. These findings are expected to help in the prevention of diabetic atherosclerosis and subsequent cardiovascular and cerebrovascular disease.  相似文献   

18.
In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell-cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell-cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell-cell interactions.  相似文献   

19.
The 150-kDa oxygen-regulated protein (ORP150) is a member of glucose-regulated proteins (GRPs), which are induced by stressful conditions such as oxygen or glucose deprivation. Here we investigated the highly abundant expression of ORP150 in mouse pancreas and its relationship with insulin secretion. Immunohistochemical analysis revealed that ORP150 expression was restricted to islets, especially to beta cells. The beta cell-specific expression was also observed in a mouse insulinoma cell line, MIN6, which secretes insulin in response to increased glucose concentration. Furthermore, ORP150 in islets dramatically diminished by fasting, concomitant with reduction of the serum insulin level. These results strongly suggest the role for ORP150 in insulin secretion.  相似文献   

20.
Four transformant strains of Neisseria gonorrhoeae were generated, two of which (WS3 and WS5) had protein I subclass A (P.IA) and two which (WS2 and WS4) had protein I subclass B (P.IB). Analysis of the strains demonstrated that the two P.IA-bearing strains differed in lipooligosaccharide (LOS) and H.8 antigen, as assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The WS5 strain had slow-migrating LOS and H.8 antigen, and the WS3 strain had fast-migrating LOS and H.8 antigen. The P.IB-bearing strains also had either slow-migrating LOS and H.8 antigen (WS4) or fast-migrating LOS and H.8 antigen (WS2). Structural and exposure analysis revealed that although the P.IAs were identical in the WS3 and WS5 strains, there was a slight alteration of the exposure of the proteins which correlated with altered LOS and/or H.8 antigen. The P.IBs were also shown to be structurally identical, but the LOS and/or H.8 antigen variation in these strains correlated with a more pronounced alteration in the exposure of the P.IB molecules. The differences in protein I (P.I) exposure were generally found in highly negatively charged regions of the molecule, suggesting that the immunogenicity and/or antigenicity of the P.I molecules may vary as a result of LOS and/or H.8 antigen alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号