首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The calf thymus DNA polymerase-alpha-primase complex purified by immunoaffinity chromatography catalyzes the synthesis of RNA initiators on phi X174 single-stranded viral DNA that are efficiently elongated by the DNA polymerase. Trace amounts of ATP and GTP are incorporated into products that are full length double-stranded circular DNAs. When synthetic polydeoxynucleotides are used as templates, initiation and DNA synthesis occurs with both poly(dT) and poly(dC), but neither initiation nor DNA synthesis was observed with poly(dA) and poly(dI) templates. Nitrocellulose filter binding and sucrose gradient centrifugation studies show that the DNA polymerase-primase complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Using d(pA)-50 with 3'-oligo(dC) tails and d(pI)-50 with 3'-oligo(dT) tails, initiator synthesis and incorporation of deoxynucleotide can be demonstrated when the average pyrimidine sequence lengths are 8 and 4, respectively. These results suggest that purine polydeoxynucleotides are used as templates by the DNA polymerase only after initiation has occurred on the oligodeoxypyrimidine sequence and that the pyrimidine stretch required by the primase activity is relatively short. Analysis of initiator chain length with poly(dC) as template showed a series of oligo(G) initiators of 19-27 nucleotides in the absence of dGTP, and 5-13 nucleotides in the presence of dGTP. The chain length of initiators synthesized by the complex when poly(dT) or oligodeoxythymidylate-tailed poly(dI) was used can be as short as a dinucleotide. Analysis of the products of replication of oligo(dC)-tailed poly(dA) shows that initiator with chain length as low as 4 can be used for initiation by the polymerase-primase complex.  相似文献   

2.
Pyrimidine 5-methyl groups influence the magnitude of DNA curvature   总被引:2,自引:0,他引:2  
P J Hagerman 《Biochemistry》1990,29(8):1980-1983
DNA containing short sequences of the form (dA)n.(dT)n can exhibit pronounced degrees of stable curvature of the helix axis, provided that these homooligomeric stretches are approximately in phase with the helix repeat. However, the precise origin of this effect is unknown. We have observed that pyrimidine 5-methyl groups can have a significant effect on the degree of curvature, depending on their locations within the homooligomeric sequences. Such effects are observed in both (dA)n.(dT/dU)n and (dI)n.(dC/d5meC)n sequence motifs, arguing for a general structural perturbation due to the methyl group. The current observations suggest that pyrimidine methyl groups could influence protein-DNA interactions not only through direct protein-methyl group contacts but also by methyl group induced alterations in local DNA structure.  相似文献   

3.
Binding of CC-1065 to poly- and oligonucleotides   总被引:3,自引:0,他引:3  
The binding of the antitumor agent CC-1065 to a variety of poly- and oligonucleotides was studied by electronic absorption, CD, and resistance to removal by Sephadex column chromatography. Competitive binding experiments between CC-1065 and netropsin were carried out with calf-thymus DNA, poly(dI-dC) · poly(dI-dC), poly(dI) · poly(dC), poly(rA) · poly(dT), poly(dA- dC) · poly(dG-dT), and poly(dA) · 2poly(dT). CC-1065 binds to polynucleotides by three mechanisms. In the first, CC-1065 binds only weakly, as judged by the induction of zero or very weak CD spectra and low resistance to extraction of drug from the polynucleotide by Sephadex chromatography. In the second and third mechanisms, CC-1065 binds strongly, as judged by the induction of two distinct, intense CD spectra and high resistance to extraction of drug from the polynucleotide, by Sephadex chromatography in both cases. The species bound by the second mechanism converts to that bound by the third mechanism with varying kinetics, which depend both on the base-pair sequence and composition of the polynucleotide. Competitive binding experiments with netropsin show that CC-1065 binds strongly in the minor groove of DNA by the second and third mechanisms of binding. Netropsin can displace CC-1065 that is bound by the second mechanism but not that bound by the third mechanism. CC-1065 binds preferentially to B-form duplex DNA and weakly (by the first binding mechanism) or not at all to RNA, DNA, and RNA–DNA polynucleotides which adopt the A-form conformation or to single-strand DNA. This correlation of strong binding of CC-1065 to B-form duplex DNA is consistent with x-ray data, which suggest an anomalous structure for poly(dI) · poly(rC), as compared with poly(rI) · poly(dC) (A-form) and poly(dI) · poly(dC) (B-form). The binding data indicate that poly(rA) · poly(dU) takes the B-form secondary structure like poly(rA) · poly(dT). Triple-stranded poly(dA) · 2poly(dT) and poly(dA) · 2poly(dU), which are considered to adopt the A-form conformation, bind CC-1065 strongly. Netropsin, which also shows a binding preference for B-form polynucleotides, also binds to poly(dA) · 2poly(dT) and occupies the same binding site as CC-1065. These binding studies are consistent with results of x-ray studies, which suggest that A-form triplex DNA retains some structural features of B-form DNA that are not present in A-form duplex DNA; i.e., the axial rise per nucleotide and the base tilt. Triple-stranded poly(dA) · 2poly(rU) does not bind CC-1065 strongly but has nearly the same conformation as poly(dA) · 2poly(dT) based on x-ray analysis. This suggests that the 2′-OH group of the poly(rU) strands interferes with CC-1065 binding to this polynucleotide. The same type of interference may occur for other RNA and DNA–RNA polynucleotides that bind CC-1065 weakly.  相似文献   

4.
Y Kawase  S Iwai  H Inoue  K Miura    E Ohtsuka 《Nucleic acids research》1986,14(19):7727-7736
The thermal stability of DNA duplexes containing deoxyinosine in a pairing position in turn with each of the four major deoxynucleotides has been investigated by measuring ultraviolet-absorbance at different temperatures. d(G2A4 X A4G2) and d(C2T4YT4C2) were prepared by the solid-phase phosphotriester method. When X is deoxyinosine, the Tm values of the duplexes are in the order Y = dC greater than dA greater than dG greater than dT greater than dU. The Tm of other duplexes containing dG, dA and dT at X were also measured. Self-complementary duplexes d(GGGAAINTTCCC) showed the same order of stability with N being dC, dA, dG and dT. Thermal stabilities of duplexes containing dG instead of dI were compared with other matched and mismatched duplexes. The Tm values of sequence isomers containing purine-pyrimidine combinations were compared. Self-complementary duplexes containing G-C and A-T in the central positions showed Tm values ca. 10 degrees higher than those containing C-G and T-A in the same positions. Thermodynamic parameters and circular dichroism spectra of these oligonucleotides were compared.  相似文献   

5.
E. coli DNA topoisomerase I catalyzes DNA topoisomerization by transiently breaking and rejoining single DNA strands (1). When an enzyme-DNA incubation mixture is treated with alkaline or detergent, DNA strand cleavage occurs, and the enzyme becomes covalently linked to the 5'-phosphoryl end of the cleaved DNA (2). Using oligonucleotides of defined length and sequence composition, this cleavage reaction is utilized to study the mechanism of E. coli DNA topoisomerase I. dA7 is the shortest oligonucleotide tested that can be cleaved by the enzyme. dT8 is the shortest oligo(dT) that can be cleaved. The site of cleavage in both cases is four nucleotides from the 3' end of the oligonucleotide. No cleavage can be observed for oligo(dC) and oligo(dG) of length up to eleven bases long. dC15 and dC16 are cleaved at one tenth or less the efficiency of oligo(dA) and oligo(dT) of comparable length.  相似文献   

6.
7.
The DNA base sequence specificity of the 64M-1 monoclonal antibody, which recognizes ultraviolet (UV)-induced (6-4)photoproducts, was characterized. The 64M-1 antibody strongly bound to UV-poly(dU) as well as to UV-poly(dT), and weakly to UV-poly(dC), UV-poly(me5dC) and UV-poly(rU). A competitive inhibition assay using UV-oligo(dT)8, UV-oligo(dTdC)4, UV-oligo(dC)8, UV-PvuI linker (GCGATCGC) and UV-PvuII linker (GCAGCTGC) indicated that the main (6-4)photoproducts detected by the 64M-1 antibody in UV-irradiated DNA are TT(6-4)photoproducts and TC(6-4)photoproducts. Comparison between dTpdT(6-4)photoproduct and dTpdC(6-4)photoproduct showed that the affinity of the 64M-1 antibody for dTpdT(6-4)photoproduct was about 5 times higher than that for dTpdC(6-4)photoproduct. The antibody also binds to isolated TT(6-4)photoproducts.  相似文献   

8.
The present study deals with the binding and cleavage by EcoRII endonuclease of concatemer DNA duplexes containing EcoRII recognition sites (formula; see text) in which dT is replaced by dU or 5-bromodeoxyuridine, or 5'-terminal dC in the dT-containing strand is methylated at position 5. The enzyme molecule is found to interact with the methyl group of the dT residue of the DNA recognition site and to be at least in proximity to the H5 atom of the 5'-terminal dC residue in dT-containing strand of this site. Modification of any of these positions exerts an equal effects on the cleavage of both DNA strands. Endonuclease EcoRII was found to bind the substrate specifically. At the same time modification of the bases in recognized sequence may result in the formation of unproductive, though stable, enzyme-substrate complexes.  相似文献   

9.
AID-mediated deamination of dC residues within the immunoglobulin locus generates dU:dG lesions whose resolution leads to class-switch recombination and somatic hypermutation. The dU:dG pair is a mismatch and comprises a base foreign to DNA and is, thus, recognized by proteins from both base excision (uracil-DNA glycosylase, UNG) and mismatch recognition (MSH2/MSH6) pathways. Strikingly, while antibody diversification is perturbed by single deficiency in either UNG or MSH2, combined UNG/MSH2 deficiency leads to a total ablation both of switch recombination and of IgV hypermutation at dA:dT pairs. The initiating dU:dG lesions appear not to be recognized and are simply replicated over. The results indicate that the major pathway for switch recombination occurs through uracil excision with mismatch recognition of dU:dG providing a backup; the second phase of hypermutation (essentially introducing mutations solely at dA:dT pairs) is triggered by mismatch recognition of the dU:dG lesion with uracil excision providing a backup.  相似文献   

10.
2',4'-Dideoxy-4'-methyleneuridine incorporated into oligodeoxynucleotides forms regular B-DNA duplexes as shown by Tm and CD measurements. Such oligomers are not cleaved by the DNA repair enzyme, UDG, which cleaves the glycosylic bond in dU but not in dT nor in dC nucleosides in single stranded and double stranded DNA. Differential binding of oligomers containing carbadU, 4'-thiodU, and dU residues to wild type and mutant UDG proteins identify an essential role for the furanose 4'-oxygen in recognition and cleavage of dU residues in DNA.  相似文献   

11.
Phage T4 polynucleotide kinase (EC 2.7.1.78) proved incapable of catalyzing the phosphorylation of thymidylyl-(3'----5')-thymidine containing either a cis-syn-cyclobutane pyrimidine dimer (d-T less than p greater than T) or a 6-4'-[pyrimidin-2'-one]pyrimidine photoproduct (d-T[p]-T), and similarly the UV-modified compounds of (dT)3 bearing either photoproduct at their 5'-end (d-T less than p greater than TpT and d-T[p]TpT). In contrast, the 3'-structural isomers of these trinucleotides (d-TpT less than p greater than T and d-TpT[p]T) were phosphorylated at the same rate as the parent compound. These phosphorylatable lesion-containing oligonucleotides are quantitatively released from UV-irradiated poly(dA):poly(dT) by enzymatic hydrolysis with snake venom phosphodiesterase and alkaline phosphatase (Liuzzi, M., Weinfeld, M., and Paterson, M. C. (1989) J. Biol. Chem. 264, 6355-6363). By combining this digestion regimen with phosphorylation by polynucleotide kinase and [gamma-32P]ATP, pyrimidine dimers were quantitated at the fmol level following exposure of poly(dA):poly(dT) and herring sperm DNA to biologically relevant UV fluences. The rate of dimer induction in the synthetic polymer, approximately 10 dimers/10(6) nucleotides/Jm-2, was in close agreement with that obtained by conventional methods. Dimers were induced at one-fourth of this rate in the natural DNA. Further treatment of the phosphorylated oligonucleotides derived from irradiated herring sperm DNA with nuclease P1 released the labeled 5'-nucleotide, thus permitting analysis of the nearest-neighbor bases 5' to the lesions. We observed a ratio for pyrimidine-to-purine bases of almost 6:1, implicating tripyrimidine stretches as hotspots for UV-induced DNA damage.  相似文献   

12.
Deoxyribooligonucleotides containing 19 repeating bases of A, T or U were prepared with normal phosphodiester (dA19, dT19, dU19) or methylphosphonate (dA*19, dT*19, dU*19) linkages. Complexes of these strands have been investigated at 1:1 and 1:2 molar ratios (purine:pyrimidine) by thermal melting and gel electrophoresis. There are dramatic sequence dependent differences in stabilities of complexes containing methylphosphonate strands. Duplexes of dA*19 with dT19 or dU19 have sharp melting curves, increased Tm values, and slopes of Tm versus log (sodium ion activity) plots reduced by about one half relative to their unmodified 'parent' duplexes. Duplexes of dA19 with either dT*19 or dU*19, however, have broader melting curves, reduced Tm values at most salt concentrations and slopes of less than one tenth the values for the unmodified duplexes. Duplex stabilization due to reduced phosphate charge repulsion is offset in the pyrimidine methylphosphonate complexes by steric and other substituent effects. Triple helical complexes with dA19 + 2dT19 and dA19 + 2dU19, which can be detected by biphasic melting curves and gel electrophoresis, are stable at increased Na+ or Mg+2 concentrations. Surprisingly, however, no triple helix forms, even at very high salt concentrations, when any normal strand(s) is replaced by a methylphosphonate strand. Since triple helical complexes with methylphosphonates have been reported for shorter oligomers, inhibition with larger oligomers may vary due to their length and extent of substitution.  相似文献   

13.
Abstract

2′,4′-Dideoxy-4′-methyleneuridine incorporated into oligodeoxynucleotides forms regular B-DNA duplexes as shown by Tm and CD measurements. Such oligomers are not cleaved by the DNA repair enzyme, UDG, which cleaves the glycosylic bond in dU but not in dT nor in dC nucleosides in single stranded and double stranded DNA. Differential binding of oligomers containing carbadU, 4′-thiodU, and dU residues to wild type and mutant UDG proteins identify an essential role for the furanose 4′-oxygen in recognition and cleavage of dU residues in DNA.  相似文献   

14.
Theoretical studies of the sequence-dependent conformation of B-DNA have been carried out using Jumna, a helicoidal co-ordinate minimization algorithm. The results obtained for a series of six oligomers with repetitive sequences show that, with the exception of the homopolymers (dA)n.(dT)n and (dG)n.(dC)n, all sequences can adopt a variety of conformations characterized by considerable changes in helicoidal parameters and also in sugar puckers which adopt C(2')-endo (falling into 2 classes) or, in the case of pyrimidine nucleotides, O(1')-endo forms. These studies lead to an improved understanding of the role of base sequence on DNA conformation and point to a number of interesting correlations between the various structural parameters describing the double helix.  相似文献   

15.
Howard FB 《Biopolymers》2005,78(4):221-229
Ultraviolet melting curves are used to determine the effect of the pyrimidine 5-methyl group on the stability of duplexes of (dA)(24) with (dU)(24), (dT)(24), (dU(12)-dT(12)), (dU-dT)(12), (dU(2)-dT(2))(6), and (dU(3)-dT(3))(4). Substitution of a T for a U results in an increase in stability, which is attributed to an increase in strength of dipole-induced dipole and dispersion (van der Waals) interactions. Significant additional enhancement occurs when two T residues are adjacent. A further increase in the number of adjacent T's has a relatively slight effect on T(m). The sequence effect appears to be largely attributable to an increment in dispersion forces.The CD spectra of the duplexes are all closely similar except in the region between 260 and 290 nm. A band near 272 nm associated with the presence of U in the spectrum of (dA)(24).(dU)(24) decreases in intensity when T's are incorporated in the pyrimidine strand. The band is completely replaced in the spectrum of (dA)(24).(dT)(24) with a new maximum at 282 nm and a minimum at 268 nm, both of lower magnitude. The emergence of the two new bands is correlated with the presence of adjacent T's once more, and only two adjacent T's appear necessary for a major part of the change to occur. The degree of cation release on thermal dissociation of the oligomer dimers ranges from Deltai = 0.14 to 0.16, about the same or slightly less than values reported for polynucleotide duplexes and less than predicted from theoretical calculations.  相似文献   

16.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

17.
18.
Synthetic nucleic acid reactivities and the distribution of idiotypes associated with poly(dA) and poly(dT) specificities were evaluated among both monoclonal and polyclonal anti-DNA antibodies from autoimmune New Zealand mice. Ten monoclonal anti-DNA antibodies (IgG2a or IgG2b), derived from NZB/NZW mice and reactive with natural DNA (duplex and/or heat-denatured), were found to collectively exhibit a diverse binding pattern with six deoxyribohomopolymers. Several monoclonal antibodies displayed reactivity with poly(dT) comparable to that with natural DNA. Serologic studies indicated that polyclonal anti-DNA autoantibodies from NZW/NZW mice and both parental strains also cross-reacted with various homopolymers and bound preferentially with those containing pyrimidines, particularly poly(dT), relative to purines. Detailed binding analyses with two poly(dT)-reactive monoclonal antibodies demonstrated that stable DNA/anti-DNA complexes were formed with synthetic oligomers containing six to 10 nucleotides; binding to such antigens was relatively insensitive to ionic strength and inversely dependent on temperature. Both antibodies exhibited preferential binding (greater than or equal to 10-fold) with poly(dT) relative to poly(dU), suggesting the importance of the C5-methyl group and/or helical conformation in pyrimidine base recognition. Idiotypes on poly(dA)-specific and poly(dT)-specific monoclonal antibodies were found to be reciprocally distinct, localized at or near active site residues, and expressed at low levels (less than 10 to 130 ng/ml) in anti-DNA sera from all three New Zealand strains. These findings suggest that: nucleotide base determinants are significantly involved in DNA/anti-DNA interactions; poly(dT) represents a major cross-reactive synthetic antigen; and idiotype expression among lupus autoantibodies which recognize such determinants may be diverse.  相似文献   

19.
Uracil-DNA glycosylase and apurinic/apyrimidinic (AP) endodeoxyribonuclease have been purified from cultured carrot cells. The two enzymes, separated by affinity chromatography on Sepharose-poly(rU), were found to have properties similar to those of the homologous bacterial and mammalian enzymes. The action of AP endodeoxyribonuclease on (dA)230 . (dT, dU)230 partially depyrimidinated by uracil-DNA glycosylase suggests that these two enzymes might act successively to initiate the repair of uracil-containing DNA.  相似文献   

20.
We report the identification and characterisation of a DNA primase from the thermophilic methanogenic archaeon Methanococcus jannaschii (Mjpri). The analysis of the complete genome sequence of this organism has identified an open reading frame coding for a protein with sequence similarity to the small subunit of the eukaryotic DNA primase (the p50 subunit of the polymerase alpha-primase complex). This protein has been overexpressed in Escherichia coli and purified to near homogeneity. Recombinant Mjpri is able to synthesise oligoribonucleotides on various pyrimidine single-stranded DNA templates [poly(dT) and poly(dC)]. This activity requires divalent cations such Mg(2+), Mn(2+)or Zn(2+), and is additionally stimulated by the monovalent cation K(+). A multiple sequence alignment has revealed that most of the regions that are conserved in eukaryotic p50 subunits are also present in the archaeal primases, including the conserved negatively charged residues, which have been shown to be essential for catalysis in the mouse primase. Of the four cysteine residues that have been postulated to make up a putative Zn-binding motif, two are not present in the archaeal homologue. This is the first report on the biochemical characterisation of an archaeal DNA primase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号