首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on our recent observation that Epstein-Barr virus (EBV) is detected in 37% of the tissues of hepatocellular carcinoma, and especially frequently in cases with hepatitis C virus (HCV), the effect of EBV infection on the replication of HCV was investigated. EBV-infected cell clones and their EBV-uninfected counterparts in cell lines MT-2 (a human T-lymphotropic virus type I-infected T-cell line), HepG2 (a hepatoblastoma cell line) and Akata (a Burkitt's lymphoma cell line) were compared in terms of their permissiveness for HCV replication following inoculation of HCV derived from patients who were HCV carriers. The results indicated that EBV-infected cell clones, but not their EBV-uninfected counterparts, promoted HCV replication. EBV-encoded nuclear antigen 1 (EBNA1), which is invariably expressed in EBV-infected cells, supported HCV replication. Deletion analysis of the EBNA1 gene showed good correlation between transactivation activity and the activity supporting HCV replication. The present findings suggest that EBV acts as a helper virus for HCV replication.  相似文献   

2.
Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA.  相似文献   

3.
The hepatitis C virus (HCV) replicon system is a potent tool for understanding the mechanisms of HCV replication and proliferation, and for the development of treatments for patients with HCV. Recently, we established an HCV subgenomic replicon (50-1) using HCV genome RNA obtained from the cultured human T cell line MT-2C infected with HCV (isolate 1B-1) in vitro. In order to further obtain other HCV replicons without difficulty, we generated a replicon RNA library derived from human non-neoplastic hepatocytes infected with HCV (isolate 1B-2) in vitro. Upon transfection of the generated RNA library to "cured cells," from which the 50-1 subgenomic replicon was eliminated by prolonged treatment with interferon-alpha, we successfully established a new HCV subgenomic replicon, 1B-2R1. We characterized 1B-2R1 replicon in terms of efficiency of replication, HCV sequence, and sensitivity to interferons. The results revealed that the replication level of the 1B-2R1 replicon was comparable to that of the 50-1 replicon. We also found that the 1B-2R1 replicon possessed an HCV sequence distinct from those of other replicons established to date, and that the 1B-2R1 replicon was sensitive to interferon-alpha, interferon-beta, and interferon-gamma. Taken together, present results indicate that the replicon RNA library generated using an in vitro HCV infection system is useful for the establishment of an HCV subgenomic replicon.  相似文献   

4.
5.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, including chronic hepatitis, fibrosis, and cirrhosis. Fibrosis often develops in HCV-infected livers and ultimately leads to cirrhosis and carcinoma. During fibrosis, hepatic stellate cells (HSC) play important roles in the control of extracellular matrix synthesis and degradation in fibrotic livers. In this study, we established a subgenomic replicon (SGR) cell line with human hepatic stellate cells to investigate the effect of HCV RNA replication on HSC. Isolated SGR clones contained HCV RNA copy numbers ranging from 104 to 107 per μg total RNA, and long-term culture of low-copy number SGR clones resulted in markedly increased HCV RNA copy numbers. Furthermore, HCV RNA replication affected gene expression of extracellular matrix-related molecules in both hepatic stellate cells and hepatic cells, suggesting that HCV RNA replication and/or HCV proteins directly contribute to liver fibrosis. The HCV RNA-replicating hepatic stellate cell line isolated in this study will be useful for investigating hepatic stellate cell functions and HCV replication machinery.  相似文献   

6.
Hepatitis C virus (HCV) replication appears to be restricted to the human hepatoma cell line Huh-7, indicating that a favorable cellular environment exists within these cells. Although adaptive mutations in the HCV nonstructural proteins typically enhance the replicative capacity of subgenomic replicons in Huh-7 cells, replication can only be detected in a subpopulation of these cells. Here we show that self-replicating subgenomic RNA could be eliminated from Huh-7 clones by prolonged treatment with alpha interferon (IFN-alpha) and that a higher frequency of cured cells could support both subgenomic and full-length HCV replication. The increased permissiveness of one of the cured cell lines allowed us to readily detect HCV RNA and antigens early after RNA transfection, eliminating the need for selection of replication-positive cells. We also demonstrate that a single amino acid substitution in NS5A is sufficient for establishing HCV replication in a majority of cured cells and that the major phosphate acceptor site of subtype 1b NS5A is not essential for HCV replication.  相似文献   

7.
Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at least two groups by their effect on replication efficiency and cooperativity: (i). mutations in NS3 with a low impact on replication but that enhanced replication cooperatively when combined with highly adaptive mutations and (ii). mutations in NS4B, -5A, and -5B, causing a strong increase in replication but being incompatible with each other. In addition to adaptive mutations, we found that the host cell plays an equally important role for efficient RNA replication. We tested several passages of the same Huh-7 cell line and found up to 100-fold differences in their ability to support replicon amplification. These differences were not due to variations in internal ribosome entry site-dependent translation or RNA degradation. In a search for cellular factor(s) that might be responsible for the different levels of permissiveness of Huh-7 cells, we found that replication efficiency decreased with increasing amounts of transfected replicon RNA, indicating that viral RNA or proteins are cytopathic or that host cell factors in Huh-7 cells limit RNA amplification. In summary, these data show that the efficiency of HCV replication in cell culture is determined both by adaptation of the viral sequence and by the host cell itself.  相似文献   

8.
9.
10.
The liver-specific microRNA miR-122 is required for efficient hepatitis C virus (HCV) RNA replication both in cell culture and in vivo. In addition, nonhepatic cells have been rendered more efficient at supporting this stage of the HCV life cycle by miR-122 expression. This study investigated how miR-122 influences HCV replication in the miR-122-deficient HepG2 cell line. Expression of this microRNA in HepG2 cells permitted efficient HCV RNA replication and infectious virion production. When a missing HCV receptor is also expressed, these cells efficiently support viral entry and thus the entire HCV life cycle.  相似文献   

11.
We found the 2′,5′-oligoadenylate synthetase-like (OASL) gene to be significantly elevated by high virus loads in human liver infected with hepatitis C virus (HCV). Here, we determined whether OASL inhibited HCV replication using an in vitro system. We constructed three expression vectors of OASL to produce isoform a (OASLa), isoform b (OASLb), and the C-terminal ubiquitin-like domain of isoform a (Ub). When Huh7 JFH-1 HCV replicon cells were separately transfected with these three vectors, colony formation of HCV-replicating cells was inhibited by 95%, 94%, and 65%, respectively. Both OASLa and OASLb were also inhibitory for cells as well as the virus because colony formation of OASL-producing cells was reduced to 41% and 8%, respectively. Stable Huh7 clones producing each of the three OASLs were established and assessed for their inhibition of HCV replication using luciferase reporter gene-containing JFH-1 replicon RNA. HCV replication was inhibited by 50-90% in several stable OASL clones. Association analysis in six Ub clones expressing different levels of Ub mRNA showed that the degree of inhibition of HCV replication was significantly associated with the amount of Ub present. In conclusion, OASL possesses two domains with HCV inhibitory activity. The N-terminal OAS-homology domain without OAS activity is inhibitory for cell growth as well as HCV replication, whereas C-terminal Ub is inhibitory only for HCV replication. Therefore, OASLa, a major isoform of this molecule induced in human liver, may mediate anti-HCV activity through two different domains.  相似文献   

12.
We screened for hepatitis C virus (HCV) inhibitors using the JFH-1 viral culture system and found that selective estrogen receptor modulators (SERMs), such as tamoxifen, clomifene, raloxifene, and other estrogen receptor α (ERα) antagonists, inhibited HCV infection. Treatment with SERMs for the first 2 h and treatment 2–24 h after viral inoculation reduced the production of HCV RNA. Treating persistently JFH-1 infected cells with SERMs resulted in a preferential inhibition of extracellular HCV RNA compared to intracellular HCV RNA. When we treated two subgenomic replicon cells, which harbor HCV genome genotype 2a (JFH-1) or genotype 1b, SERMs reduced HCV genome copies and viral protein NS5A. SERMs inhibited the entry of HCV pseudo-particle (HCVpp) genotypes 1a, 1b, 2a, 2b and 4 but did not inhibit vesicular stomatitis virus (VSV) entry. Further experiment using HCVpp indicated that tamoxifen affected both viral binding to cell and post-binding events including endocytosis. Taken together, SERMs seemed to target multiple steps of HCV viral life cycle: attachment, entry, replication, and post replication events. SERMs may be potential candidates for the treatment of HCV infection.  相似文献   

13.
Hepatitis C virus (HCV) infection causes chronic liver disease and is a worldwide health problem. Despite ever-increasing demand for knowledge on viral replication and pathogenesis, detailed analysis has been hampered by a lack of efficient viral culture systems. We isolated HCV genotype 2a strain JFH-1 from a patient with fulminant hepatitis. This strain replicates efficiently in Huh7 cells. Efficient replication and secretion of recombinant viral particles can be obtained in cell culture by transfection of in vitro-transcribed full-length JFH-1 RNA into Huh7 cells. JFH-1 virus generated in cell culture is infectious for both naive Huh7 cells and chimpanzees. The efficiency of viral production and infectivity of generated virus is substantially improved with permissive cell lines. This protocol describes how to use this system, which provides a powerful tool for studying viral life cycle and for the construction of antiviral strategies and the development of effective vaccines. Viral particles can be obtained in 12 days with this protocol.  相似文献   

14.
Efficient replication of hepatitis C virus (HCV) subgenomic RNA in cell culture requires the introduction of adaptive mutations. In this report we describe a system which enables efficient replication of the Con1 subgenomic replicon in Huh7 cells without the introduction of adaptive mutations. The starting hypothesis was that high amounts of the NS5A hyperphosphorylated form, p58, inhibit replication and that reduction of p58 by inhibition of specific kinase(s) below a certain threshold enables HCV replication. Upon screening of a panel of kinase inhibitors, we selected three compounds which inhibited NS5A phosphorylation in vitro and the formation of NS5A p58 in cell culture. Cells, transfected with the HCV Con1 wild-type sequence, support HCV RNA replication upon addition of any of the three compounds. The effect of the kinase inhibitors was found to be synergistic with coadaptive mutations in NS3. This is the first direct demonstration that the presence of high amounts of NS5A-p58 causes inhibition of HCV RNA replication in cell culture and that this inhibition can be relieved by kinase inhibitors.  相似文献   

15.
The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV.  相似文献   

16.
DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.  相似文献   

17.
Recently a cell culture model supporting the complete life cycle of the hepatitis C virus (HCV) was developed. Searching for host cell determinants involved in the HCV replication cycle, we evaluated the efficiency of virus propagation in different Huh-7-derived cell clones. We found that Huh-7.5 cells and Huh7-Lunet cells, two former replicon cell clones that had been generated by removal of an HCV replicon by inhibitor treatment, supported comparable levels of RNA replication and particle production, whereas virus spread was severely impaired in the latter cells. Analysis of cell surface expression of CD81 and scavenger receptor class B type I (SR-BI), two molecules previously implicated in HCV entry, revealed similar expression levels for SR-BI, while CD81 surface expression was much higher on Huh-7.5 cells than on Huh7-Lunet cells. Ectopic expression of CD81 in Huh7-Lunet cells conferred permissiveness for HCV infection to a level comparable to that for Huh-7.5 cells. Modulation of CD81 cell surface density in Huh-7.5 cells by RNA interference indicated that a certain amount of this molecule (approximately 7 x 10(4) molecules per cell) is required for productive infection with a low dose of HCV. Consistent with this, we show that susceptibility to HCV infection depends on a critical quantity of CD81 molecules. While infection is restricted in cells expressing very small amounts of CD81, susceptibility rapidly rises within a narrow range of CD81 levels, reaching a plateau where higher expression does not further increase the efficiency of infection. Together these data indicate that a high density of cell surface-exposed CD81 is a key determinant for productive HCV entry into host cells.  相似文献   

18.
Zhu Q  Guo JT  Seeger C 《Journal of virology》2003,77(17):9204-9210
The hepatitis C virus (HCV) pandemic affects the health of more than 170 million people and is the major indication for orthotopic liver transplantations. Although the human liver is the primary site for HCV replication, it is not known whether extrahepatic tissues are also infected by the virus and whether nonprimate cells are permissive for RNA replication. Because HCV exists as a quasispecies, it is conceivable that a viral population may include variants that can replicate in different cell types and in other species. We have tested this hypothesis and found that subgenomic HCV RNAs can replicate in mouse hepatoma and nonhepatic human epithelial cells. Replicons isolated from these cell lines carry new mutations that could be involved in the control of tropism of the virus. Our results demonstrated that translation and RNA-directed RNA replication of HCV do not depend on hepatocyte or primate-specific factors. Moreover, our results could open the path for the development of animal models for HCV infection.  相似文献   

19.
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号