首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Optimization of techniques for cryopreservation of mammalian sperm is limited by a lack of knowledge regarding water permeability characteristics during freezing in the presence of extracellular ice and cryoprotective agents (CPAs). Cryomicroscopy cannot be used to measure dehydration during freezing in mammalian sperm because they are highly nonspherical and their small dimensions are at the limits of light microscopic resolution. Using a new shape-independent differential scanning calorimeter (DSC) technique, volumetric shrinkage during freezing of ICR mouse epididymal sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and CPAs. Using previously published data, the mouse sperm cell was modeled as a cylinder (122-microm long, radius 0.46 microm) with an osmotically inactive cell volume (V(b)) of 0.61V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The "combined best-fit" membrane permeability parameters at 5 and 20 degrees C/min for mouse sperm cells in solution are as follows: in D-PBS: L(pg) = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp) = 94.1 kJ/mole (22.5 kcal/mole) (R(2) = 0.94); in "low" CPA media (consisting of 1% glycerol, 6% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp)[cpa] = 122.2 kJ/mole (29.2 kcal/mole) (R(2) = 0.98); and in "high" CPA media (consisting of 4% glycerol, 16% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 0.68 x 10(-15) m(3)/Ns (0.004 microm/min-atm) and E(Lp)[cpa] = 63.6 kJ/mole (15.2 kcal/mole) (R(2) = 0.99). These parameters are significantly different than previously published parameters for mammalian sperm obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The parameters obtained in this study also suggest that damaging intracellular ice formation (IIF) could occur in mouse sperm cells at cooling rates as low as 25-45 degrees C/min, depending on the concentrations of the CPAs. This may help to explain the discrepancy between the empirically determined optimal cryopreservation cooling rates, 10-40 degrees C/min, and the numerically predicted optimal cooling rates, greater than 5000 degrees C/min, obtained using suprazero mouse sperm permeability parameters that do not account for the presence of extracellular ice. As an independent test of this prediction, the percentages of viable and motile sperm cells were obtained after freezing at two different cooling rates ("slow" or 5 degrees C/min; "fast," or 20 degrees C/min) in both the low and high CPA media. The greatest sperm motility and viability was found with the low CPA media under fast (20 degrees C/min) cooling conditions.  相似文献   

2.
This study explored the optimization of techniques for sperm cryopreservation of an economically important fish species, the striped bass Morone saxatilis. The volumetric shrinkage or the water transport response during freezing of sperm cells was obtained using a differential scanning calorimeter (DSC) technique. Water transport was obtained in the presence of extracellular ice at a cooling rate of 20 degrees C/min in two different media: (1) without cryoprotective agents (CPAs), and (2) with 5% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder of length of 22.8 microm and diameter 0.288 microm and was assumed to have an osmotically inactive cell volume (V(b)) of 0.6 V(0), where V(0) is the isotonic or initial cell volume. By fitting a model of water transport to the experimentally determined water transport data, the best fit membrane permeability parameters (reference membrane permeability to water, L(pg) or L(pg)[cpa] and the activation energy, E(Lp) or E(Lp)[cpa]) were determined and ranged from L(pg)=0.011-0.001 microm/min-atm, and E(Lp)=40.2-9.2 kcal/mol). The parameters obtained in this study suggested that the optimal rate of cooling for striped bass sperm cells in the presence and absence of DMSO range from 14 to 20 degrees C/min. These theoretically predicted rates of optimally freezing M. saxatilis sperm compared quite closely with independent and experimentally determined optimal rates of cooling striped bass sperm.  相似文献   

3.
This study reports the subzero water transport characteristics (and empirically determined optimal rates for freezing) of sperm cells of live-bearing fishes of the genus Xiphophorus, specifically those of the southern platyfish Xiphophorus maculatus. These fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. Water transport during freezing of X. maculatus sperm cell suspensions was obtained using a shape-independent differential scanning calorimeter technique in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol, and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder with a length of 52.35 microm and a diameter of 0.66 microm with an osmotically inactive cell volume (Vb) of 0.6 V0, where V0 is the isotonic or initial cell volume. This translates to a surface area, SA to initial water volume, WV ratio of 15.15 microm(-1). By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best fit membrane permeability parameters (reference membrane permeability to water at 0 degrees C, Lpg or Lpg [cpa] and the activation energy, E(Lp) or E(Lp) [cpa]) were found to range from: Lpg or Lpg [cpa] = 0.0053-0.0093 microm/minatm; E(Lp) or E(Lp) [cpa] = 9.79-29.00 kcal/mol. By incorporating these membrane permeability parameters in a recently developed generic optimal cooling rate equation (optimal cooling rate, [Formula: see text] where the units of B(opt) are degrees C/min, E(Lp) or E(Lp) [cpa] are kcal/mol, L(pg) or L(pg) [cpa] are microm/minatm and SA/WV are microm(-1)), we determined the optimal rates of freezing X. maculatus sperm cells to be 28 degrees C/min (in HBSS), 47 degrees C/min (in HBSS+14% glycerol) and 36 degrees C/min (in HBSS+10% DMSO). Preliminary empirical experiments suggest that the optimal rate of freezing X. maculatus sperm in the presence of 14% glycerol to be approximately 25 degrees C/min. Possible reasons for the observed discrepancy between the theoretically predicted and experimentally determined optimal rates of freezing X. maculatus sperm cells are discussed.  相似文献   

4.
In the present study a shape independent differential scanning calorimeter (DSC) technique was used to measure the dehydration response during freezing of ejaculated canine sperm cells. Volumetric shrinkage during freezing of canine sperm cell suspensions was obtained at cooling rates of 5 and 10 degrees C/min in the presence of extracellular ice and CPAs (6 different combinations of freezing media were used, ranging from a media with no CPAs, and those with 0.5%, 3%, and 6% glycerol and with 0.5% and 3% Me(2)SO). Using previously published data, the canine sperm cell was modeled as a cylinder of length 105.7mum and a radius of 0.32mum with an osmotically inactive cell volume, V(b), of 0.6 V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data the best fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The "combined best fit" membrane permeability parameters at 5 and 10 degrees C/min for canine sperm cells in the absence of CPAs are: L(pg)=0.52x10(-15)m(3)/Ns (0.0029mum/min-atm) and E(Lp)=64.0kJ/mol (15.3kcal/mol) (R(2)=0.99); and the corresponding parameters in the presence of CPAs ranged from L(pg)[cpa]=0.46 to 0.53x10(-15) m(3)/Ns (0.0027-0.0031mum/min-atm) and E(Lp)[cpa]=46.4-56.0kJ/mol (11.1-13.4kcal/mol). These parameters are significantly different than previously published parameters for canine and other mammalian sperm obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The parameters obtained in this study also suggest that optimal rates of freezing canine sperm cells ranges from 10 to 30 degrees C/min; these theoretical cooling rates are found to be in close conformity with previously published but empirically determined optimal cooling rates.  相似文献   

5.
In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the dehydration response during freezing of sperm cells from diploid and tetraploid Pacific oysters, Crassostrea gigas. This represents the first application of the DSC technique to sperm cells from nonmammalian species. Volumetric shrinkage during freezing of oyster sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 8% (v/v) concentration of dimethyl sulfoxide (DMSO), a commonly used cryoprotective agent (CPA). Using previously published data, sperm cells from diploid oysters were modeled as a two-compartment "ball-on-stick" model with a "ball" 1.66 microm in diameter and a "stick" 41 microm in length and 0.14 microm wide. Similarly, sperm cells of tetraploid oysters were modeled with a "ball" 2.14 microm in diameter and a "stick" 53 microm in length and 0.17 microm wide. Sperm cells of both ploidy levels were assumed to have an osmotically inactive cell volume, Vb, of 0.6 Vo, where Vo is the isotonic (or initial) cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (Lpg and ELp) were determined. The combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for haploid sperm cells (or cells from diploid Pacific oysters) in the absence of CPAs were: Lpg = 0.30 x 10(-15) m(3)/Ns (0.0017 microm/min-atm) and ELp = 41.0 kJ/mole (9.8 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.27 x 10(-15) m(3)/Ns (0.0015 microm/min-atm) and ELp[cpa] = 38.0 kJ/mole (9.1 kcal/mole). Similarly, the combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for diploid sperm cells (or cells from tetraploid Pacific oysters) in the absence of CPAs were: Lpg = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp = 29.7 kJ/mole (7.1 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp[cpa] = 37.6 kJ/mole (9.0 kcal/mole). The parameters obtained in this study suggest that optimal rates of cooling for Pacific oyster sperm cells range from 40 to 70 degrees C/min. These theoretical cooling rates are in close conformity with empirically determined optimal rates of cooling sperm cells from Pacific oysters, C. gigas.  相似文献   

6.
Sperm cryopreservation of live-bearing fishes, such as those of the genus Xiphophorus is only beginning to be studied, although these fishes are valuable models for biomedical research and are commercially raised as ornamental fish for use in aquariums. To explore optimization of techniques for sperm cryopreservation of these fishes, this study measured the volumetric shrinkage response during freezing of sperm cells of Xiphophorus helleri by use of a shape-independent differential scanning calorimeter (DSC) technique. Volumetric shrinkage during freezing of X. helleri sperm cell suspensions was obtained in the presence of extracellular ice at a cooling rate of 20 degrees C/min in three different media: (1) Hanks' balanced salt solution (HBSS) without cryoprotective agents (CPAs); (2) HBSS with 14% (v/v) glycerol; and (3) HBSS with 10% (v/v) dimethyl sulfoxide (DMSO). The sperm cell was modeled as a cylinder of 33.3 microm in length and 0.59 microm in diameter with an osmotically inactive cell volume (V(b)) of 0.6V(o), where V(o) is the isotonic or initial cell volume. By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the best-fit membrane permeability parameters (reference membrane permeability to water, L(pg) or L(pg)[cpa] and the activation energy, E(Lp) or E(Lp)[cpa]) of the Xiphophorus helleri sperm cell membrane were determined. The best-fit membrane permeability parameters at 20 degrees C/min in the absence of CPAs were: L(pg)=0.776 x 10(-15)m3/Ns (0.0046 microm/min atm), and E(Lp)=50.1 kJ/mol (11.97 kcal/mol) (R2=0.997). The corresponding parameters in the presence of 14% glycerol were L(pg)[cpa]=1.063 x 10(-15)m3/Ns (0.0063 microm/min atm), and E(Lp)[cpa]=83.81 kJ/mol (20.04 kcal/mol) (R2=0.997). The parameters in the presence of 10% DMSO were L(pg)[cpa]=1.4 x 10(-15)m3/Ns (0.0083 microm/min atm), and E(Lp)[cpa]=90.96 kJ/mol (21.75 kcal/mol) (R2=0.996). Parameters obtained in this study suggested that the optimal rate of cooling for X. helleri sperm cells in the presence of CPAs ranged from 20 to 35 degrees C/min and were in close agreement with recently published, empirically determined optimal cooling rates.  相似文献   

7.
In the present study a well-established differential scanning calorimeter (DSC) technique is used to measure the water transport phenomena during freezing of stromal vascular fraction (SVF) and adipose tissue derived adult stem (ADAS) cells at different passages (Passages 0 and 2). Volumetric shrinkage during freezing of adipose derived cells was obtained at a cooling rate of 20 degrees C/min in the presence of extracellular ice and two different, commonly used, cryoprotective agents, CPAs (10% DMSO and 10% Glycerol). The adipose derived cells were modeled as spheres of 50 microm diameter with an osmotically inactive volume (Vb) of 0.6Vo, where Vo is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the "best-fit" membrane permeability parameters (reference membrane permeability to water, Lpg or Lpg[cpa] and the activation energy, ELp or ELp[cpa]) were determined. The "best-fit" membrane permeability parameters for adipose derived cells in the absence and presence of CPAs ranged from: Lpg=23.1-111.5x10(-15) m3/Ns (0.135-0.652 microm/min-atm) and ELp=43.1-168.8 kJ/mol (9.7-40.4 kcal/mol). Numerical simulations of water transport were then performed under a variety of cooling rates (5-100 degrees C/min) using the experimentally determined membrane permeability parameters. And finally, the simulation results were analyzed to predict the optimal rates of freezing adipose derived cells in the presence and absence of CPAs.  相似文献   

8.
Optimization of equine sperm cryopreservation protocols requires an understanding of the water permeability characteristics and volumetric shrinkage response during freezing. A cell-shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine sperm suspensions at cooling rates of 5 degrees C/min and 20 degrees C/min in the presence and absence of cryoprotective agents (CPAs), i.e., in the Kenney extender and in the lactose-EDTA extender, respectively. The equine sperm was modeled as a cylinder of length 36.5 microm and a radius of 0.66 microm with an osmotically inactive cell volume (V(b)) of 0.6V(o), where V(o) is the isotonic cell volume. Sperm samples were collected using water-insoluble Vaseline in the artificial vagina and slow cooled at < or = 0.3 degrees C/min in an Equitainer-I from 37 degrees C to 4 degrees C. By fitting a model of water transport to the experimentally obtained DSC volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The combined best-fit parameters of water transport (at both 5 degrees C/min and 20 degrees C/min) in Kenney extender (absence of CPAs) are L(pg) = 0.02 microm min(-1) atm(-1) and E(Lp) = 32.7 kcal/mol with a goodness-of-fit parameter R(2) = 0.96, and the best-fit parameters in the lactose-EDTA extender (the CPA medium) are L(pg)[cpa] = 0.008 microm min(-1) atm(-1) and E(Lp)[cpa] = 12.1 kcal/mol with R(2) = 0.97. These parameters suggest that the optimal cooling rate for equine sperm is approximately 29 degrees C/min and is approximately 60 degrees C/min in the Kenney extender and in the lactose-EDTA extender. These rates are predicted assuming no intracellular ice formation occurs and that the approximately 5% of initial osmotically active water volume trapped inside the cells at -30 degrees C will form innocuous ice on further cooling. Numerical simulations also showed that in the lactose-EDTA extender, equine sperm trap approximately 3.4% and approximately 7.1% of the intracellular water when cooled at 20 degrees C/min and 100 degrees C/min, respectively. As an independent test of this prediction, the percentage of viable equine sperm was obtained after freezing at 6 different cooling rates (2 degrees C/min, 20 degrees C/min, 50 degrees C/min, 70 degrees C/min, 130 degrees C/min, and 200 degrees C/min) to -80 degrees C in the CPA medium. Sperm viability was essentially constant between 20 degrees C/min and 130 degrees C/min.  相似文献   

9.
The "two-step" low-temperature microscopy (equilibrium and dynamic) freezing methods and a differential scanning calorimetry (DSC) technique were used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing, in Part I of this study. In this study, the experimentally determined dynamic water transport data are curve fit to a model of water transport using a standard Krogh cylinder geometry (Model 1) to predict the biophysical parameters of water transport: L(pg) = 1.76 microm/min-atm and E(L(p)) = 75.5 kcal/mol for control liver cells and L(pg)[cpa] = 1.18 microm/min-atm and E(L(p))[cpa] = 69.0 kcal/mol for liver cells equilibrated with 0.4 M glucose. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5 degrees C/min but do so when cooled at 2 degrees C/min. Cells also retained twice as much intracellular fluid in the presence of 0.4 M glucose than in control tissue when cooled at 5 degrees C/min. The ability of R. sylvatica liver cells to retain water during fast cooling (>/=5 degrees C/min) appears to be primarily due to its liver tissue architecture and not to a dramatically lower permeability to water, in comparison to mammalian (rat) liver cells which do dehydrate completely when cooled at 5 degrees C/min. A modified Krogh model (Model 2) was constructed to account for the cell-cell contact in frog liver architecture. Using the same biophysical permeability parameters obtained with Model 1, the modified Krogh model (Model 2) is used in this study to qualitatively explain the experimentally measured water retention in some cells during freezing on the basis of different volumetric responses by cells directly adjacent to vascular space versus cells at least one cell removed from the vascular space. However, at much slower cooling rates (1-2 degrees C/h) experienced by the frog in nature, the deciding factor in water retention is the presence of glucose and the maintenance of a sufficiently high subzero temperature (>/=-8 degrees C).  相似文献   

10.
The purpose of the present study was to examine the effect of two different suprazero (room temperature +25 degrees C to +4 degrees C) cooling conditions on the measured water transport response of primate (Macaca mulatta) ovarian tissue in the presence and absence of cryoprotective agents (CPAs). Freshly collected Macaca mulatta (rhesus monkey) ovarian tissue sections were cooled at either 0.5 degrees C/min or 40 degrees C/min from 25 to 4 degrees C. A shape independent differential scanning calorimeter (DSC) technique was then used to measure the volumetric shrinkage during freezing of ovarian tissue sections at a freezing rate of 5 degrees C/min in the presence and absence of three different CPAs (0.85 M glycerol, 0.85 M dimethylsulfoxide, and 0.85 M ethylene glycol). Thus, water transport during freezing of primate ovarian tissue was obtained at eight different conditions (i.e., at four different freezing media with two different suprazero cooling conditions). The water transport response of ovarian tissue cooled rapidly from 25 to 4 degrees C was significantly different (P < 0.01) than that of slow cooled tissue, in the freezing media without CPAs and with dimethylsulfoxide. However, the differences in the measured water transport response due to the imposed suprazero cooling conditions were reduced with the addition of glycerol and ethylene glycol (statistically different with P < 0.05). By fitting a model of water transport to the experimentally obtained volumetric shrinkage data the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The best-fit parameters of water transport in primate ovarian tissue sections ranged from: L(pg) = 0.7 to 0.15 microm/min-atm and E(Lp) = 22.1 to 32.1 kcal/mol (the goodness of fit parameter, R(2) > 0.96). These parameters suggest that the "optimal rates of cryopreservation" for ovarian tissue are significantly dependent upon suprazero cooling conditions and the choice of CPA.  相似文献   

11.
The water transport response during freezing of sperm cells of Morone chrysops (white bass, WB) was obtained using a shape-independent differential scanning calorimeter (DSC) technique. Sperm cell suspensions were frozen at a cooling rate of 20 degrees C/min in two different media: (1) without cryoprotective agents (CPAs), or (2) with 5% (v/v) dimethyl sulfoxide (Me2SO). For calculations, the sperm cell was modeled as a cylinder of length 24.8 microm and diameter of 0.305 microm, while the osmotically inactive cell volume (Vb) was assumed to be 0.6 Vo, where Vo was the isotonic or the initial cell volume. By fitting a model of water transport to the experimentally determined water transport data, the best fit membrane permeability parameters (reference membrane permeability to water, Lpg or Lpg[cpa] and the activation energy, ELp or ELp[cpa]) were determined, and ranged from Lpg = 0.51-1.7 x 10(-15) m3/Ns (0.003-0.01 microm/min-atm), and ELp = 83.6-131.3 kJ/mol (20.0-31.4 kcal/mol). The parameters obtained in this study suggest that the optimal rate of cooling for M. chrysops sperm cells is approximately 22 degrees C/min, a value that compares closely with experimentally determined optimal rates of cooling (approximately 16 degrees C/min).  相似文献   

12.
To model the cryobiological responses of cells and tissues, permeability characteristics are often measured at suprazero temperatures and the measured values are used to predict the responses at subzero temperatures. The purpose of the present study was to determine whether the rate of cooling from +25 to +4 degrees C influenced the measured water transport response of ovarian tissue at subzero temperatures in the presence or absence of cryoprotective agents (CPAs). Sections of freshly collected equine ovarian tissue were first cooled either at 40 degrees C/min or at 0.5 degrees C/min from 25 to 4 degrees C, and then cooled to subzero temperatures. A shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine ovarian tissue sections. After ice was induced to form in the extracellular fluid within the specimen, the sample was frozen from the phase change temperature to -50 degrees C at 5 degrees C/min. Replicate samples were frozen in isotonic medium alone or in medium containing 0.85 M glycerol or 0.85 M dimethylsulfoxide. The water transport response of ovarian tissue samples cooled at 40 degrees C/min from 25 to 4 degrees C was significantly different (confidence level >95%) from that of tissue samples cooled at 0.5 degrees C/min, whether in the presence or absence of CPAs. We fitted a model of water transport to the experimentally-derived volumetric shrinkage data and determined the best-fit membrane permeability parameters (L(pg) and E(Lp)) of equine ovarian tissue during freezing. Subzero water transport parameters of ovarian tissue samples cooled at 0.5 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.06 to 0.73 microm/min.atm and E(Lp) = 6.1 to 20.5 kcal/mol. The corresponding parameters of samples cooled at 40 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.04 to 0.61 microm/min.atm and E(Lp) = 8.2 to 54.2 kcal/mol. Calculations made of the theoretical response of tissue at subzero temperatures suggest that the optimal cooling rates to cryopreserve ovarian tissue are significantly dependent upon suprazero cooling conditions.  相似文献   

13.
The use of cryosurgery in the treatment of uterine fibroids is emerging as a possible treatment modality. The two known mechanisms of direct cell injury during the tissue freezing process are linked to intracellular ice formation and cellular dehydration. These processes have not been quantified within uterine fibroid tumor tissue. This study reports the use of a combination of freeze-substitution microscopy and differential scanning calorimetry (DSC) to quantify freeze-induced dehydration within uterine fibroid tumor tissue. Stereological analysis of histological tumor sections was used to obtain the initial cellular volume (V(o)) or the Krogh model dimensions (deltaX, the distance between the microvascular channels = 15.5 microm, r(vo), the initial radius of the extracellular space = 4.8 micro m, and L, the axial length of the Krogh cylinder = 19.1 microm), the interstitial volume ( approximately 23%), and the vascular volume ( approximately 7%) of the fibroid tumor tissue. A Boyle-van't Hoff plot was then constructed by examining freeze-substituted micrographs of "equilibrium"-cooled tissue slices to obtain the osmotically inactive cell volume, V(b) = 0.47V(o). The high interstitial volume precludes the use of freeze-substitution microscopy data to quantify freeze-induced dehydration. Therefore, a DSC technique, which does not suffer from this artifact, was used to obtain the water transport data. A model of water transport was fit to the calorimetric data at 5 and 20 degrees C/min to obtain the "combined best fit" membrane permeability parameters of the embedded fibroid tumor cells, assuming either a Krogh cylinder geometry, L(pg) = 0.92 x 10(-13) m(3)/Ns (0.55 microm/min atm) and E(Lp) = 129.3 kJ/mol (30.9 kcal/mol), or a spherical cell geometry (cell diameter = 18.3 microm), L(pg) = 0.45 x 10(-13) m(3)/Ns (0.27 microm/min atm) and E(Lp) = 110.5 kJ/mol (26.4 kcal/mol). In addition, numerical simulations were performed to generate conservative estimates, in the absence of ice nucleation between -5 and -30 degrees C, of intracellular ice volume in the tumor tissue at various cooling rates typical of those experienced during cryosurgery (< or =100 degrees C/min). With this assumption, the Krogh model simulations showed that the fibroid tumor tissue cells cooled at rates < or = 50 degrees C/min are essentially dehydrated; however, at rates >50 degrees C/min the amount of water trapped within the tissue cells increases rapidly with increasing cooling rate, suggesting the formation of intracellular ice.  相似文献   

14.
A differential scanning calorimeter technique was used to generate experimental data for volumetric shrinkage during cooling at 20 degrees C/min in adipose derived adult stem cells (ASCs) in the presence and absence of cryoprotective agents (CPAs). By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the membrane permeability parameters of ASCs were obtained. For passage-4 (P4) ASCs, the reference hydraulic conductivity Lpg and the value of the apparent activation energy ELP were determined to be 1.2 X 10(-13) m3/Ns and 177.8 kJ/mole, respectively. We found that the addition of either glycerol or dimethylsulfoxide (DMSO) significantly decreased the value of the reference hydraulic conductivity Lpg(cpa) and the value of the apparent activation energy ELp(cpa) in P4 ASCs. The values of Lpg(cpa) in the presence of glycerol and DMSO were determined as 0.39 x 10(-13) and 0.50 X 109-13) m3/Ns, respectively, while the corresponding values of ELp(cpa) were 51.0 and 61.5 kJ/mole. Numerical simulations of water transport were then performed under a variety of cooling rates (5-100 degreesC/min) using the experimentally determined membrane permeability parameters. And finally, the simulation results were analyzed to predict the optimal rates of freezing P4 adipose derived cells in the presence and absence of CPAs.  相似文献   

15.
There is currently a need for experimental techniques to assay the biophysical response (water transport or intracellular ice formation, IIF) during freezing in the cells of whole tissue slices. These data are important in understanding and optimizing biomedical applications of freezing, particularly in cryosurgery. This study presents a new technique using a Differential Scanning Calorimeter (DSC) to obtain dynamic and quantitative water transport data in whole tissue slices during freezing. Sprague-Dawley rat liver tissue was chosen as our model system. The DSC was used to monitor quantitatively the heat released by water transported from the unfrozen cell cytoplasm to the partially frozen vascular/extracellular space at 5 degrees C/min. This technique was previously described for use in a single cell suspension system (Devireddy, et al. 1998). A model of water transport was fit to the DSC data using a nonlinear regression curve-fitting technique, which assumes that the rat liver tissue behaves as a two-compartment Krogh cylinder model. The biophysical parameters of water transport for rat liver tissue at 5 degrees C/min were obtained as Lpg = 3.16 x 10(-13) m3/Ns (1.9 microns/min-atm), ELp = 265 kJ/mole (63.4 kcal/mole), respectively. These results compare favorably to water transport parameters in whole liver tissue reported in the first part of this study obtained using a freeze substitution (FS) microscopy technique (Pazhayannur and Bischof, 1997). The DSC technique is shown to be a fast, quantitative, and reproducible technique to measure dynamic water transport in tissue systems. However, there are several limitations to the DSC technique: (a) a priori knowledge that the biophysical response is in fact water transport, (b) the technique cannot be used due to machine limitations at cooling rates greater than 40 degrees C/min, and (c) the tissue geometric dimensions (the Krogh model dimensions) and the osmotically inactive cell volumes Vb, must be determined by low-temperature microscopy techniques.  相似文献   

16.
The “two-step” low-temperature microscopy (equilibrium and dynamic) freezing methods and a differential scanning calorimetry (DSC) technique were used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing, in Part I of this study. In this study, the experimentally determined dynamic water transport data are curve fit to a model of water transport using a standard Krogh cylinder geometry (Model 1) to predict the biophysical parameters of water transport: Lpg = 1.76 μm/min-atm and ELp = 75.5 kcal/mol for control liver cells and Lpg[cpa] = 1.18 μm/min-atm and ELp[cpa] = 69.0 kcal/mol for liver cells equilibrated with 0.4 M glucose. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5°C/min but do so when cooled at 2°C/min. Cells also retained twice as much intracellular fluid in the presence of 0.4 M glucose than in control tissue when cooled at 5°C/min. The ability of R. sylvatica liver cells to retain water during fast cooling (≥5°C/min) appears to be primarily due to its liver tissue architecture and not to a dramatically lower permeability to water, in comparison to mammalian (rat) liver cells which do dehydrate completely when cooled at 5°C/min. A modified Krogh model (Model 2) was constructed to account for the cell–cell contact in frog liver architecture. Using the same biophysical permeability parameters obtained with Model 1, the modified Krogh model (Model 2) is used in this study to qualitatively explain the experimentally measured water retention in some cells during freezing on the basis of different volumetric responses by cells directly adjacent to vascular space versus cells at least one cell removed from the vascular space. However, at much slower cooling rates (1–2°C/h) experienced by the frog in nature, the deciding factor in water retention is the presence of glucose and the maintenance of a sufficiently high subzero temperature (≥−8°C).  相似文献   

17.
The rate at which equine and macaque ovarian tissue sections are first cooled from +25 degrees C to +4 degrees C has a significant effect on the measured water transport when the tissues are subsequently frozen in 0.85 M solutions of glycerol, dimethylsulfoxide (DMSO), or ethylene glycol (EG). To determine whether the response of ovarian tissues is altered if they are suspended in mixtures of cryoprotective agents (CPAs), rather than in solutions of a single CPA, we have now measured the subzero water transport from ovarian tissues that were suspended in mixtures of DMSO and EG. Sections of freshly collected equine and macaque ovaries were suspended either in a mixture of 0.9 M EG plus 0.7 M DMSO (equivalent to a mixture of approximately 5% vv of EG and DMSO) or in a 1.6M solution of only DMSO or only EG. The tissue sections were cooled from +25 degrees C to +4 degrees C and then frozen to subzero temperatures at 5 degrees C/min. As the tissues were being frozen, a shape-independent differential scanning calorimeter technique was used to measure water loss from the tissues and, consequently, the best fit membrane permeability parameters (L(pg) and E(Lp)) of ovarian tissues during freezing. In the mixture of DMSO+EG, the respective values of L(pg) and E(Lp) for equine tissue first cooled at 40 degrees C/min between +25 degrees C and +4 degrees C before being frozen were 0.15 microm/min atm and 7.6 kcal/mole. The corresponding L(pg) and E(Lp) values for equine tissue suspended in 1.6M DMSO were 0.12 microm/min atm and 27.2 kcal/mole; in 1.6M EG, the values were 0.06 microm/min atm and 21.9 kcal/mole, respectively. For macaque ovarian tissues suspended in the mixture of DMSO+EG, the respective values of L(pg) and E(Lp) were 0.26 microm/min atm and 26.2 kcal/mole. Similarly, the corresponding L(Lg) and E(Lp) values for macaque tissue suspended in 1.6M DMSO were 0.22 microm/min atm and 31.4 kcal/mole; in 1.6 M EG, the values were 0.20 microm/min atm and 27.9 kcal/mole. The parameters for both equine and macaque tissue samples suspended in the DMSO+EG mixture and first cooled at 0.5 degrees C/min between +25 degrees C and +4 degrees C were very similar to the corresponding values for samples cooled at 40 degrees C/min. In contrast, the membrane parameters of equine and macaque samples first cooled at 0.5 degrees C/min in single-component solutions were significantly different from the corresponding values for samples cooled at 40 degrees C/min. These results show that the membrane properties of ovarian cells from two species are different, and that the membrane properties are significantly affected both by the solution in which the tissue is suspended and by the rate at which the tissue is cooled from +25 degrees C to +4 degrees C before being frozen. These observations suggest that these variables ought to be considered in the derivation of methods to cryopreserve ovarian tissues.  相似文献   

18.
The effect of several cell-level parameters on the predicted optimal cooling rate B(opt) of an arbitrary biological system has been studied using a well-defined water transport model. An extensive investigation of the water transport model revealed three key cell level parameters: reference permeability of the membrane to water L(pg), apparent activation energy E(Lp), and the ratio of the available surface area for water transport to the initial volume of intracellular water (SA/WV). We defined B(opt) as the "highest" cooling rate at which a predefined percent of the initial water volume is trapped inside the cell (values ranging from 5% to 80%) at a predefined end temperature (values ranging from -5 degrees C to -40 degrees C). Irrespective of the choice of the percent of initial water volume trapped and the end temperature, an exact and linear relationship exists between L(pg), SA/WV, and B(opt0. However, a nonlinear and inverse relationship is found between E(Lp) and B(opt). Remarkably, for a variety of biological systems a comparison of the published experimentally determined values of B(opt) agreed quite closely with numerically predicted B(opt) values when the model assumed 5% of initial water is trapped inside the cell at a temperature of -15 degrees C. This close agreement between the experimental and model predicted optimal cooling rates is used to develop a generic optimal cooling rate chart and a generic optimal cooling rate equation that greatly simplifies the prediction of the optimal rate of freezing of biological systems.  相似文献   

19.
Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.  相似文献   

20.
Understanding the biophysical processes that govern freezing injury of a tissue equivalent (TE) is an important step in characterizing and improving the cryopreservation of these systems. TEs were formed by entrapping human dermal fibroblasts (HDFs) in collagen or in fibrin gels. Freezing studies were conducted using a Linkam cryostage fitted to an optical microscope allowing observation of the TEs cooled under controlled rates between 5 and 130 degrees C/min. Typically, freezing of cellular systems results in two biophysical processes that are both dependent on the cooling rate: dehydration and/or intracellular ice formation (IIF). Both these processes can potentially be destructive to cells. In this study, the biophysics of freezing cells in collagen and fibrin TEs have been quantified and compared to freezing cells in suspension. Experimental data were fitted in numerical models to extract parameters that governed water permeability, E(Lp) and L(pg), and intracellular ice nucleation, omega(o) and kappa(o). Results indicate that major differences exist between freezing HDFs in suspension and in a tissue equivalent. During freezing, 55% of the HDFs in suspension formed IIF as compared to 100% of HDFs forming IIF in collagen and fibrin TE at a cooling rate of 130 degrees C/min. Also, both the water permeability and the IIF parameters were determined to be higher for HDFs in TEs as compared to cell suspensions. Between the TEs, HDFs in fibrin TE exhibited higher values for the biophysical parameters as compared to HDFs in collagen TE. The observed biophysics seems to indicate that cell-cell and cell-matrix interactions play a major role in ice propagation in TEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号