首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cephaloridine and gentamicin are selectively accumulated in renal cortex and produce necrosis of proximal tubular cells. However, the mechanisms responsible for renal cortical accumulation of these two antibiotics are quite different; therefore the early pathogenetic processes may not be the same. In the present study, effects of two cephalosporins (cephaloridine and cephalothin) and an aminoglycoside (gentamicin) on rat renal cortical glutathione were determined. Cephaloridine produced a dose-related depletion of renal cortical glutathione one hour following a single administration of the drug. In contrast, cephalothin in equivalent doses did not reduce renal cortical glutathione. Gentamicin had no effect on renal cortical glutathione, even when an acutely lethal dose (1000 mg/kg) was used. Pretreatment of rats with diethyl maleate (0.4 ml/kg) markedly depleted renal cortical glutathione and this pretreatment also potentiated cephaloridine nephrotoxicity. These results suggest that glutathione may play a protective role against cephaloridine but not gentamicin nephrotoxicity.  相似文献   

2.
The chemotherapeutic drug cisplatin has some side effects including nephrotoxicity that has been associated with reactive oxygen species production, particularly superoxide anion. The major source of superoxide anion is nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, the specific segment of the nephron in which superoxide anion is produced has not been identified. Rats were sacrificed 72 h after cisplatin injection (7.5 mg/kg), and kidneys were obtained to isolate glomeruli and proximal and distal tubules. Cisplatin induced superoxide anion production in glomeruli and proximal tubules but not in distal tubules. This enhanced superoxide anion production was prevented by diphenylene iodonium, an inhibitor of NADPH oxidase. Consistently, this effect was associated with the increased expression of gp91phox and p47phox, subunits of NADPH oxidase. The enhanced superoxide anion production in glomeruli and proximal tubules, associated with the increased expression of gp91phox and p47phox, is involved in the oxidative stress in cisplatin‐induced nephrotoxicity.  相似文献   

3.
Ochratoxin A (OTA), a mycotoxin, is a potent nephrotoxin in humans and animals. Selenium (Se) is an essential micronutrient for humans and animals, and plays a key role in antioxidant defense. To date, little is known about the effect of Se on OTA-induced nephrotoxicity. In this study, the protective effects of selenomethionine against OTA-induced nephrotoxicity were investigated using the porcine kidney 15 (PK15) cells as a model. The results showed that OTA induced nephrotoxicity in a dose-dependent manner. Se at 0.5, 1, 2 and 4 μM had significant protective effects against OTA-induced nephrotoxicity. Furthermore, selenomethionine enhanced the activity and mRNA and protein expression of glutathione peroxidase 1 (GPx1), mRNA expression of GPx4, and mRNA expression of thioredoxin reductase 1 in the presence and absence of OTA. Among them, promoting effect of selenomethionine on GPx1 was maximal. Knock-down of GPx1 by using a GPx1-specific siRNA eliminated the protective effects of selenomethionine against OTA-induced nephrotoxicity. The results suggest that selenomethionine alleviates OTA-induced nephrotoxicity by improving selenoenzyme expression in PK15 cells. Therefore, selenomethionine supplementation may be an attractive strategy for protecting humans and animals from the risk of kidney damage induced by OTA.  相似文献   

4.
5.
Lai  Tianbao  Chen  Liangyi  Chen  Xingyu  He  Jianquan  Lv  Peiyu  Ge  Hua 《Molecular and cellular biochemistry》2019,453(1-2):205-215

Cis-diamminedichloroplatinum(II) (cisplatin) (CP) is an important chemotherapeutic agent used in the treatment of several cancers. However, it has several side effects including nephrotoxicity gonadotoxicity, hepatotoxicity, and ototoxicity. In in vitro experiments, antioxidants or reactive oxygen species scavengers have a cytoprotective effect on cells exposed to cisplatin (CP). Ellagic acid (EA) is one such bioactive polyphenol that is abundant in some fruits, nuts, and seeds. Various authors have reported that EA has strong antioxidant and antitumor potential. The present study was, therefore, carried out to explore the protective potential of EA on CP-induced gonadotoxicity and nephrotoxicity in colon tumor-bearing mice. Animals were divided into five groups: Group I: normal control, Group II: DMH treated. After 20 weeks of DMH treatment, the animals were divided into four subgroups, viz., Group III: no treatment, Group IV: EA, Group V: CP, and Group VI: CP?+?EA. Administration of EA significantly ameliorated the toxicity caused by CP as indicated by improved kidney function tests and reproductive function tests. EA treatment to CP-abused mice also led to a marked reduction in the extent of peroxidative damage to tissue as was evident from the improvement in the histopathological changes in kidney and testis. Blood counts were also improved on administration of EA to CP-treated mice. This article provides the evidence that antioxidant efficacy of EA has beneficial effects on CP-induced nephrotoxicity and gonadotoxicity and contributes to understanding the role of oxidative stress, and suggests several points as part of the mechanism of CP toxicity.

  相似文献   

6.
The anticancer drug cyclophosphamide (CP) has nephrotoxic effects besides its urotoxicity, which both in turn limit its clinical utility. The nephrotoxicity of CP is less common compared to its urotoxicity, and not much importance has been given for the study of mechanism of CP-induced nephrotoxicity so far. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the kidney injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the nephrotoxicity of CP and the possible protective effects of seleno l-methionine (SLM) on rat kidneys were investigated. Forty-two Sprague–Dawley rats were equally divided into six groups of seven rats each. The control group received saline, and other rats were injected with CP (100 mg/kg), SLM (0.5 or 1 mg/kg), or CP + SLM intraperitoneally. Malondialdehyde (MDA) and glutathione (GSH) levels in kidney homogenates of rats were measured, and kidney tissues were examined under the microscope. CP-treated rats showed a depletion of renal GSH levels (28% of control), while CP + SLM-injected rats had GSH values close to the control group. MDA levels increased 36% of control following CP administration, which were significantly decreased after SLM treatment. Furthermore, these biochemical results were supported by microscopical observations. In conclusion, the present study not only points to the therapeutic potential of SLM in CP-induced kidney toxicity but also indicates a significant role for ROS and their relation to kidney dysfunction.  相似文献   

7.
It has been recently postulated from our laboratory that Arabic gum (AG) offers a protective effect in the kidney of rats against nephrotoxicity induced by gentamicin via inhibiting lipid peroxidation. It has also recently shown a powerful antioxidant effect through scavenging superoxide anions. In this study we utilized a rat model of cisplatin (CP)-induced nephrotoxicity to determine its peak time following (1, 2, 5, and 7 days) of a single CP (7.5 mg/kg, i.p.) injection. Also, a possible protective effect of cotreatment with AG (7.5 g/kg/day p.o.) on CP-induced nephrotoxicity was investigated. Biochemical as well as histological assessments were carried out. CP-induced nephrotoxicity was manifested by significant elevations of the functional parameters blood urea, serum creatinine, and kidney/body weight ratio. Maximum toxic effects of CP were observed 5 days after its injection, while it started after day 1 in the biochemical parameters, such as glutathione depletion in the kidney tissue with concomitant increases in lipid peroxides and platinum content. Additionally, severe necrosis and desquamation of tubular epithelial cells in renal cortex as well as interstitial nephritis were observed after 5 days in CP-treated animals. Five days after AG cotreatment with CP did not protect the kidney from the damaging effects of CP. However, it significantly reduced CP-induced lipid peroxidation. These findings suggest that lipid peroxidation is not the main cause of CP-induced nephrotoxicity but it is rather more dependent on other factors such as platinum disposition in renal interstitial tubules.  相似文献   

8.
Cyclosporine A (CsA) is the immunosuppressor most frequently used in transplant surgery and in the treatment of autoimmune diseases, because of its specific inhibiting effect on the signal transduction pathways of cell T receptor. It has been shown that CsA is able to generate reactive oxygen species and lipid peroxidation, which are directly involved in the CsA nephrotoxicity, hepatotoxicity and cardiotoxicity. So, the use of antioxidants seems to be a useful tool in attempting to reduce CsA adverse effects. The aim of this review is to summarise the general aspect of CsA, the classification of antioxidants, their mechanism of action and their administration for improving CsA side effects. The protective role of different antioxidants has been evaluated on CsA-induced nephrotoxicity. It has been shown that the antioxidants, improved the morphological renal cytoarchitecture, increased the antioxidant enzyme content, decreased lipid peroxidation and reactive species oxygen (ROS). The protective role of antioxidants was also found in CsA hepatotoxicity and was related to the increase in antioxidant capacity of hepatic tissue, which was responsible for ameliorating hepatic morphology. Recently, it has been demonstrated that CsA induces side effects on the heart but the data to this purpose are very few and also the number of results on the protective role played by antioxidants it is very limited. In conclusion, not only do these observations provide insight into the intricate mechanism of CsA adverse effects, but they also present novel opportunities for the design and development of more effective therapeutic strategies against negative effects.  相似文献   

9.
Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.  相似文献   

10.
As part of an investigation into whether it would be possible to use UV radiation as a suitable pretreatment of the donor cells in asymmetric hybridization experiments, the effects of this treatment on sugarbeet (Beta vulgaris L.) protoplast DNA have been determined and compared with those of gamma radiation. Both nuclear and mitochondrial DNAs have been examined. The dose ranges chosen had previously been determined to be potentially applicable for fusion experiments. Pulsed field gel electrophoresis and standard agarose gel electrophoresis have been used in combination with laser scanning densitometry to gain an insight into the precise nature and degree of DNA damage resulting from irradiation. It was observed that UV radiation introduced substantial modifications to sugarbeet DNA. Double-strand breaks were detected, the number of which was found to be directly proportional to the dose applied. Such breaks indicate that UV radiation results in substantial chromosome/chromatid fragmentation in these cells. Chemical modifications to the DNA structure could be revealed by a significant reduction in DNA hybridization to specific mitochondrial and nuclear DNA probes. Following gamma irradiation at equivalent biological doses (i.e. those just sufficient to prevent colony formation) much less damage was detected. Fewer DNA fragments were produced indicating the presence of fewer double-strand breaks in the DNA structure. In comparison to UV treatments, DNA hybridization to specific probes following gamma radiation was inhibited less. For both treatments, mitochondrial DNA appeared more sensitive to damage than nuclear DNA. The possibility that DNA repair processes might account for these differences has also been investigated. Results indicate either that repair processes are not involved in the effects observed or that DNA repair occurs so fast that it was not possible to demonstrate such involvement with the experimental system used. The general relevance of such processes to asymmetric cell hybridization is discussed.  相似文献   

11.
The effect of dysfunctional mitochondria in several cell pathologies has been reported in renal diseases, including diabetic nephropathy and acute kidney injury. Previous studies have reported that mitochondrial transplantation provided surprising results in myocardial and liver ischemia, as well as in Parkinson's disease. We aimed to investigate the beneficial effects of isolated mitochondria transplantation from mesenchymal stem cells (MSCs) in vivo, to mitigate renal damage that arises from doxorubicin‐mediated nephrotoxicity and its action mechanism. In this study, a kidney model of doxorubicin‐mediated nephrotoxicity was used and isolated mitochondria from MSCs were transferred to the renal cortex of rats. The findings showed that the rate of isolated mitochondria from MSCs maintains sufficient membrane integrity, and was associated with a beneficial renal therapeutic effect. Following doxorubicin‐mediated renal injury, isolated mitochondria or vehicle infused into the renal cortex and rats were monitored for five days. This study found that mitochondrial transplantation decreased cellular oxidative stress and promoted regeneration of tubular cells after renal injury (P < .001, P = .009). Moreover, mitochondrial transplantation reduced protein accumulation of tubular cells and reversed renal deficits (P = .01, P < .001). Mitochondrial transplantation increased Bcl‐2 levels, and caspase‐3 levels decreased in injured renal cells (P < .015, P < .001). Our results provide a direct link between mitochondria dysfunction and doxorubicin‐mediated nephrotoxicity and suggest a therapeutic effect of transferring isolated mitochondria obtained from MSCs against renal injury. To our knowledge, this study is the first study in the literature that showed good therapeutic effects of mitochondrial transplantation in a nephrotoxicity model, which is under‐researched.  相似文献   

12.
It has been suggested that oxidative stress is a potential mechanism for vancomycin-induced nephrotoxicity and hyperbaric oxygen therapy (HBO) has been shown to be effective in treating renal toxicity that has been pharmacologically induced in animal models. The aim of this study was to investigate the effect of HBO therapy on vancomycin-induced nephrotoxicity in rats. The study group comprised 36 Sprague Dawley male rats. We treated 30 with 500 mg/kg of intraperitoneal vancomycin once a day for 7 days. Half of these rats received a daily 1-hour treatment with HBO at 2 Atmospheres (ATM) on the same 7 days and formed the HBO+ group. The other 15 subjects received no HBO treatment (HBO- group). The remaining six rats served as the control group, three received HBO treatments alone and no treatment was administered to the other three rats. Laboratory results were obtained on day 8 and the intervention and control groups were compared. Rats in the HBO+ group gained less weight than the HBO- group (11.6 grams vs 22.6 grams; P = 0,008) and had significantly higher serum blood urea nitrogen (99.6 vs 52.6 mg/dL; P<0.001), serum creatinine (0.42 vs 0.16 mg/dL; P = 0.001) and magnesium (3.6 vs 3.1mg/dL; P = 0.014). The vancomycin blood levels were also higher in the HBO+ group (27.8 vs 6.7 μg/mL; P = 0.078). There were no pathological kidney changes in the control group. All the kidneys from the treated groups (vancomycin +HBO and vancomycin HBO-) showed moderate to severe histopathological changes with no statistical significance between them. This study demonstrated that exposure to hyperbaric oxygen intensified vancomycin-induced nephrotoxicity in rats.  相似文献   

13.
14.
Cisplatin is a highly effective chemotherapeutic agent which causes severe nephrotoxicity. Studies have suggested that reactive oxygen species, mainly generated in mitochondria, play a central role in cisplatin-induced renal damage. A wide range of antioxidants have been evaluated as possible protective agents against cisplatin-induced nephrotoxicity; however a safe and efficacious compound has not yet been found. The present study is the first to evaluate the protective potential of carvedilol, a beta-blocker with strong antioxidant properties, against the mitochondrial oxidative stress and apoptosis in kidney of rats treated with cisplatin. The following cisplatin-induced toxic effects were prevented by carvedilol: increased plasmatic levels of creatinine and blood urea nitrogen (BUN); lipid peroxidation, oxidation of cardiolipin; oxidation of protein sulfhydryls; depletion of the non-enzymatic antioxidant defense and increased activity of caspase-3. Carvedilol per se did not present any effect on renal mitochondria. It was concluded that carvedilol prevents mitochondrial dysfunction and renal cell death through the protection against the oxidative stress and redox state unbalance induced by cisplatin. The association of carvedilol to cisplatin chemotherapy was suggested as a possible strategy to minimize the nephrotoxicity induced by this antitumor agent.  相似文献   

15.
Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP), water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1) also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.  相似文献   

16.
Cyclosporine A (CsA) use is associated with several side effects, the most important of which is nephrotoxicity that includes, as we previously showed, tubular injury and interstitial fibrosis. Recently, many researchers have been interested in minimizing these effects by pharmacological interventions. To do this, we tested whether the administration of a red wine polyphenol, Provinol (PV), prevents the development of CsA-induced nephrotoxicity. Rats were treated for 21 days and divided into four groups: control; group treated with PV (40 mg/kg/day by oral administration in tap water); group treated with CsA (15 mg/kg/day by subcutaneous injection); group treated with CsA plus PV. CsA produced a significant increase of systolic blood pressure; it did not affect urinary output, but caused a significant decrease in creatinine clearance. These side effects were associated with an increase in conjugated dienes, which are lipid peroxidation products, inducible NO-synthase (iNOS), and nuclear factor (NF)-kB, which are involved in antioxidant damage. However, PV prevented these negative effects through a protective mechanism that involved reduction of both oxidative stress and increased iNOS and NF-kB expression induced by CsA. These results provide a pharmacological basis for the beneficial effects of plant-derived polyphenols against CsA-induced renal damage associated with CsA.  相似文献   

17.
The effect of aminoguanidine (AG) on nephrotoxicity induced by cisplatin (CDDP) was investigated. A single dose of CDDP (7.5 mg/kg i.p.) induced nephrotoxicity, manifested biochemically by a significant elevation in serum urea, creatinine and a severe decrease in serum albumin. Moreover, marked increases in kidney weight, urine volume and urinary excretion of albumin were observed. Nephrotoxicity was further confirmed by a significant decrease in glutathione-S-transferase (GST, E.C. 2.5.1.18), glutathione peroxidase (GSH-Px, E.C. 1.11.1.9) and catalase (E.C. 1.11.1.6) and a significant increase in lipid peroxides measured as malondialdhyde (MDA) in kidney homogenates. Administration of AG (100 mg/kg per day p.o.) in drinking water 5 days before and 5 days after CDDP injection produced a significant protection against nephrotoxicity induced by CDDP. The amelioration of nephrotoxicity was evidenced by significant reductions in serum urea and creatinine concentrations. In addition, AG tended to normalize decreased levels of serum albumin. Urine volume, urinary excretions of albumin and GST and kidney weight were significantly decreased. Moreover, AG prevented the rise of MDA and the reduction of GST and GSH-Px activities in the kidney. These results suggest that AG has a protective effect on nephrotoxicity induced by CDDP and it may therefore improve the therapeutic index of CDDP.  相似文献   

18.
Cisplatin nephrotoxicity has been considered as serious side effect caused by cisplatin-based chemotherapy. Recent evidence indicates that renal tubular cell apoptosis and inflammation contribute to the progression of cisplatin-induced acute kidney injury (AKI). Hepatocyte nuclear factor 1β (HNF1β) has been reported to regulate the development of kidney cystogenesis, diabetic nephrotoxicity, etc However, the regulatory mechanism of HNF1β in cisplatin nephrotoxicity is largely unknown. In the present study, we examined the effects of HNF1β deficiency on the development of cisplatin-induced AKI in vitro and in vivo. HNF1β down-regulation exacerbated cisplatin-induced RPTC apoptosis by indirectly inducing NF-κB p65 phosphorylation and nuclear translocation. HNF1β knockdown C57BL/6 mice were constructed by injecting intravenously with HNF1β-interfering shRNA and PEI. The HNF1β scramble and knockdown mice were treated with 30 mg/kg cisplatin for 3 days to induce acute kidney injury. Cisplatin treatment caused increased caspase 3 cleavage and p65 phosphorylation, elevated serum urea nitrogen and creatinine, and obvious histological damage of kidney such as fractured tubules in control mice, which were enhanced in HNF1β knockdown mice. These results suggest that HNF1β may ameliorate cisplatin nephrotoxicity in vitro and in vivo, probably through regulating NF-κB signalling pathway.  相似文献   

19.
The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.  相似文献   

20.
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP- nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号