共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Expression of Abdominal-B homeoproteins in Drosophila embryos 总被引:8,自引:0,他引:8
The Abdominal-B (Abd-B) gene determines development of the posteriormost segments in Drosophila. Genetic and molecular analysis suggested that it consists of two genetically separable functions that are conferred by two related homeoproteins termed m and r. We have raised an antiserum against Abd-B protein to describe the patterns of Abd-B protein expression during embryonic development. The pattern of r protein expression, as deduced by analysis of Abd-B mutants, is restricted to ps14 and 15 in all germ layers and observes a parasegmental boundary at its anterior margin of expression. In contrast, the pattern of m protein expression is unusual as its level in the ectoderm increases from ps10 to ps13 in parasegmental steps. Its anterior margin of expression is highly dynamic shifting anteriorly across more than 3 parasegments during midembryonic development. Evidently, the control mechanisms of m and r protein expression are considerably different. Moreover, an antibody-positive Abd-B mutant suggests that these differ, in the case of m protein expression, to some extent in individual germ layers. 相似文献
4.
5.
6.
7.
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position. 相似文献
8.
Conserved properties of the Drosophila homeodomain protein, Ind 总被引:1,自引:0,他引:1
9.
Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution 总被引:1,自引:0,他引:1
Hox genes have been implicated in the evolution of many animal body patterns, but the molecular events underlying trait modification have not been elucidated. Pigmentation of the posterior male abdomen is a recently acquired trait in the Drosophila melanogaster lineage. Here, we show that the Abdominal-B (ABD-B) Hox protein directly activates expression of the yellow pigmentation gene in posterior segments. ABD-B regulation of pigmentation evolved through the gain of ABD-B binding sites in a specific cis-regulatory element of the yellow gene of a common ancestor of sexually dimorphic species. Within the melanogaster species group, male-specific pigmentation has subsequently been lost by at least three different mechanisms, including the mutational inactivation of a key ABD-B binding site in one lineage. These results demonstrate how Hox regulation of traits and target genes is gained and lost at the species level and have general implications for the evolution of body form at higher taxonomic levels. 相似文献
10.
11.
12.
13.
14.
A gradient of bicoid protein in Drosophila embryos 总被引:32,自引:0,他引:32
The maternal gene bicoid (bcd) organizes anterior development in Drosophila. Its mRNA is localized at the anterior tip of the oocyte and early embryo. Antibodies raised against bcd fusion proteins recognize a 55-57 kd doublet band in Western blots of extracts of 0-4 hr old embryos. This protein is absent or reduced in embryonic extracts of nine of the 11 bcd alleles. The protein is concentrated in the nuclei of cleavage stage embryos. It cannot be detected in oocytes, indicating temporal control of bcd mRNA translation. The bcd protein is distributed in an exponential concentration gradient with a maximum at the anterior tip, reaching background levels in the posterior third of the embryo. The gradient is probably generated by diffusion from the local mRNA source and dispersed degradation. 相似文献
15.
16.
Patterns of engrailed protein in early Drosophila embryos 总被引:2,自引:0,他引:2
By the onset of gastrulation during nuclear cycle 14 of Drosophila embryogenesis, the engrailed gene is expressed in fourteen one-cell-wide stripes. Each stripe defines the anlagen of the posterior compartment of a metameric segment. We report here several observations relating to the role and disposition of the engrailed protein during the embryonic stages that precede cellularization. We demonstrate that in embryos mutant for the engrailed gene, there were characteristic morphological abnormalities as early as the 6th cleavage cycle. In addition, the engrailed protein was detected in pre-cycle-9 embryos by Western blot analysis. When localization of engrailed protein begins during cycle 14, engrailed expression was first present in broad anterior and posterior regions before the fourteen-stripe pattern appeared. 相似文献
17.
The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye 总被引:1,自引:0,他引:1
The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye. 相似文献
18.
Jean-Baptiste Coutelis Charles Géminard Pauline Spéder Magali Suzanne Astrid Gerlinde Petzoldt Stéphane Noselli 《Developmental cell》2013,24(1):89-97
- Download : Download high-res image (218KB)
- Download : Download full-size image
19.
A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos 总被引:4,自引:0,他引:4
The expression of the homeodomain protein XIHbox 1 in developing Xenopus limbs was analyzed using specific antibodies. In the forelimb bud mesoderm XIHbox 1 shows a clear antero-posterior gradient that is strongest in the anterior and proximal region of the forelimb. Hindlimb bud mesoderm is devoid of XIHbox 1, indicating an early molecular difference between arm and leg. The innermost ectodermal cell layer is positive throughout the forelimb and hindlimb bud ectoderm, but no other areas of the skin. Similar results are obtained in developing mouse limbs, suggesting that XIHbox 1 participates in forelimb development in a variety of tetrapods. In early tadpoles analyzed at stages preceding limb bud formation, the lateral plate mesoderm is positive in the region corresponding to the earliest "field" of forelimb information, but not in the hindlimb field. These results suggest a molecular link between morphogenetic fields, gradients, and homeobox genes in vertebrate development. 相似文献
20.
Bicoid (Bcd) is a morphogenetic protein that instructs patterning along the anterior-posterior (A-P) axis in Drosophila melanogaster embryos. Despite extensive studies, what controls the formation of a normal concentration gradient of Bcd remains an unresolved and controversial question. Here, we show that Bcd protein degradation is mediated by the ubiquitin-proteasome pathway. We have identified an F-box protein, encoded by fates-shifted (fsd), that has an important role in Bcd protein degradation by targeting it for ubiquitylation. Embryos from females lacking fsd have an altered Bcd gradient profile, resulting in a shift of the fatemap along the A-P axis. Our study is an experimental demonstration that, contrary to an alternative hypothesis, Bcd protein degradation is required for normal gradient formation and developmental fate determination. 相似文献