首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies suggested that the biodiversity of the mangrove‐associated Bostrychia radicans/Bostrychia moritziana species complex on the Pacific coast of Central America, based on genetic and reproductive data, were low compared with similar areas on the Atlantic coast. Evolutionary scenarios were proposed based on either a recent introduction to the Pacific, or a more uniform environment leading to genetically connected populations and low differentiation between populations. We sampled more extensively in southern Mexico, Guatemala and El Salvador and sequenced the samples for the RuBisCo spacer. Our results show that genetic diversity is high in these populations. Many haplotypes retrieved are also found in the Atlantic Ocean (USA, Brazil), an observation not made before. Data suggest that populations are highly differentiated with little evidence of isolation‐by‐distance. The population at La Puntilla, El Salvador is highly differentiated from other populations. Data also suggest that diversity is reduced in a northerly direction, with only one haplotype, unique to Pacific Central America, found north of Chiapas, Mexico. This could be due to northern expansion of this unique genotype as sea surface temperatures ameliorated following the last glacial maximum. Our data do not support the previous proposition of low diversity in the east central Pacific and suggest that much of the Pacific Central America diversity is from before the closure of the Isthmus of Panama.  相似文献   

2.
Mathews LM 《Molecular ecology》2006,15(13):4049-4063
Recent investigations suggest that marine biodiversity may be much higher than earlier estimates, and an important hidden source of diversity in marine systems is the phenomenon of cryptic species complexes. Such complexes are informative models for research into the evolutionary processes that govern species compositions of marine fauna. The snapping shrimp genera Alpheus and Synalpheus are known to harbour large numbers of cryptic species; here, I characterize the genetic structure of the Alpheus armillatus species complex in the northern Caribbean, west Atlantic, and Gulf of Mexico using mitochondrial and nuclear sequence data. Over this geographical region, the complex harbours at least three lineages that are probable reproductively isolated species; all major lineages diverged subsequent to the close of the Isthmus of Panama. Only one lineage was present in the Gulf of Mexico, whereas outside the Gulf of Mexico there was no clear tendency for lineage dominance by geographical region, as most sites were populated by shrimp from at least two lineages. However, within each lineage, there was strong evidence of population genetic differentiation between geographical regions. All lineages showed strong signals of demographic expansion, and one lineage showed sharply reduced genetic diversity, suggestive of past population bottlenecks or recently founded populations with low gene flow from other sites. These results show that evolutionary processes leading to divergence and speciation have been common and recent in the snapping shrimp, and suggest that connectivity among shrimp populations may be limited.  相似文献   

3.
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.  相似文献   

4.
Genetic variation and population structure of wild white shrimp (Litopenaeus vannamei) from 4 geographic locations from Mexico to Panama were investigated using 5 microsatellite DNA loci. The genetic diversity between populations was indicated by the mean number of alleles per locus and mean observed heterozygosity, which ranged from 7.4 to 8.6 and from 0.241 to 0.388, respectively. Significant departures from Hardy-Weinberg equilibrium were found at most locations at each locus, with the exception Guatemala at Pvan0013, and were caused by high heterozygote deficiencies. Genetic differences between localities were detected by pairwise comparison based on allelic and genotypic frequencies, with the exception of locus Pvan1003. Significant pairwise F ST values between locations and total F ST showed that the white shrimp population is structured into subpopulations. However, population differentiation does not follow an isolation-by-distance model. Knowledge of the genetic diversity and structure of L.vannamei populations will be of interest for aquaculture and fisheries management to utilize and preserve aquatic biodiversity.  相似文献   

5.
We isolated 14 polymorphic microsatellite loci for the western Atlantic tropical seagrass, Thalassia testudinum, using two different enrichment procedures. Polymorphism was screened among samples from Mexico and Panama. Allelic diversity varied between three and 17 alleles per locus, and expected heterozygosity ranged from 0.271 to 0.859.  相似文献   

6.
In recent years the coastal dune vegetation of the state of Yucatan, Mexico has become highly fragmented due to clearing for development. We evaluated patterns of genetic differentiation and genetic variability among orchid populations (Myrmecophila christinae var christinae) in eight habitat fragments along a west‐to‐east disturbance gradient in which sites located on the western end began experiencing fragmentation earlier than those in the east. Leaf samples from adult individuals and juvenile plants were collected from all eight populations, and analyzed using starch‐gel electrophoresis in a lithium buffer system. Per population estimates of genetic diversity, proportion of polymorphic loci at 95 percent, mean number of alleles per locus, allelic richness, and population structure were calculated, as well as estimate comparisons between generations. Genetic diversity at the loci analyzed did not show significant differences among the eight populations. Based on the results, the model of isolation by distance does not fit the M. christinae populations under study; in some cases, populations close to one another apparently experienced very little genetic exchange. Thus, we propose that so far, fragmentation has not led to significant genetic differences between populations subject to different historical backgrounds of disturbance (i.e., time since onset of disturbance), as well as between generations within each of the M. christinae study populations. Nevertheless, the genetic characteristics of some remnant populations might change over time due to a future decrease in the opportunities for genetic exchange with other populations.  相似文献   

7.
Habitat fragmentation may influence genetic variability through reductions in population size and the physical isolation of conspecifics. We explored the effects of these factors on genetic diversity in a population of mantled howler monkeys (Alouatta palliata) on Barro Colorado Island (BCI), Panama. The study population was established in 1914 when an unknown number of resident individuals were isolated from the surrounding mainland by damming of the Río Chagres to create the Panama Canal. Analyses of 10 microsatellite loci indicated that, despite this isolation, the howler monkeys on BCI exhibit levels of genetic diversity (H S = 0.584 ± 0.063) among the highest reported for any species of Alouatta. These data also revealed that although relatedness among adults in a social group was significantly greater than zero, the BCI population is not highly genetically structured. Tests for genetic bottlenecks based on departures from equilibrium expectations failed to reveal evidence of a recent reduction in population size. In contrast, coalescent modeling indicated that this population has likely experienced a marked decline within the last few 100 years. These findings generate new insights into the genetic structure of A. palliata and suggest that while the formation of BCI may not have substantially reduced genetic variation in these animals, genetic diversity has been influenced by historical changes in population size.  相似文献   

8.
Zaprionus indianus, also known as the African fig fly, is an invasive pest of a variety of commercial and native fruit. The species was first reported in Brazil in 1999, but has established itself in much of the New World within the last 10–15 years. We used nucleotide sequences from a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene to examine haplotype relationships, population structure, and infer the colonization history of Z. indianus in Mexico and Panama. Construction of a haplotype network showed that six COI haplotypes, obtained from flies collected at six localities in Mexico and one in Panama, clustered into three distinct clades. Clade composition was generally consistent in flies from Panama to northwestern Mexico, and analysis of molecular variance indicated no significant structure among populations. Three of the six haplotypes from Mexico and Panama were identical to previously reported haplotypes from Brazil. None of the six haplotypes, however, were shared with previously reported haplotypes from potential source populations in the Old World. The results of our genetic analysis suggest that the invasion of Z. indianus into Central America and Mexico most probably includes a northward migration of individuals from Brazil, with the possibility of at least one additional introduction of Z. indianus to the New World. Additional sequence data from potential source populations in the Old World will be required to confidently determine the number of introductions of Z. indianus into the New World, and to identify the geographic source.  相似文献   

9.
Summary Allozyme analysis was performed on 83 wild Phaseolus vulgaris accessions, representing a wide geographical distribution from Mesoamerica to Argentina, to determine levels of genetic diversity and geographic patterns of variability at nine polymorphic isozyme loci. The collection can be divided into two major groups, one consisting of accessions from Mexico, Central America, Colombia and Peru, and the other consisting of accessions from Peru and Argentina. One accession from northern Peru is distinct from the two major groups, and may delineate a transition zone between the two divergent groups. The level of genetic diversity within wild P. vulgaris (Ht=0.132) is comparable with those found in other Phaseolus species. There was no significant within-accession gene diversity (Hs=0.006); however, there is a moderate level of genetic diversity (Dst=0.126) between accessions. Our results are consistent with previous studies on the genetic diversity of wild P. vulgaris using phaseolin, the major seed storage protein of beans.  相似文献   

10.
Atlantic salmon (Salmo salar) populations in Maine, USA, are listed as a Distinct Population Segment under the U.S. Endangered Species Act due to reduced spawning runs and juvenile densities. Whenever possible, optimal conservation strategies for endangered populations should incorporate both present and historical knowledge of genetic variation. We assayed genetic diversity at seven microsatellite loci and at the mitochondrial ND1 gene in an endangered wild population of Atlantic salmon captured from the Dennys River from 1963 to 2001 using DNA’s extracted from archival scale and tissue samples. We examined temporal trends of genetic diversity, population structure, and effective population size (Ne). Overall temporal trends of diversity and Ne show significant reductions from 1963 to 2001 raising the possibility that current restoration efforts may be impacted by historical loss of diversity potentially critical to adaptation. Although our results suggest genetic stability in this population from 1963 to 1981, significant differentiation was observed for both the 1995 and 2001 samples compared with all other temporal samples. The presence of an ND1 mtDNA haplotype in this population, historically observed only in European and Newfoundland stocks, may represent previously unrecognized local wild diversity or, alternatively, may represent introgression from non-native fish.  相似文献   

11.
The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA = 2.69; HE = 0.41 and ChB: NA = 3.0; HE = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.  相似文献   

12.
While microsatellites have been used to examine genetic structure in local populations of Neotropical trees, genetic studies based on such high-resolution markers have not been carried out for Mesoamerica as a whole. Here we assess the genetic structure of the Mesoamerican mahogany Swietenia macrophylla King (big-leaf mahogany), a Neotropical tree species recently listed as endangered in CITES which is commercially extinct through much of its native range. We used seven variable microsatellite loci to assess genetic diversity and population structure in eight naturally established mahogany populations from six Mesoamerican countries. Measures of genetic differentiation (FST and RST) indicated significant differences between most populations. Unrooted dendrograms based on genetic distances between populations provide evidence of strong phylogeographic structure in Mesoamerican mahogany. The two populations on the Pacific coasts of Costa Rica and Panama were genetically distant from all the others, and from one another. The remaining populations formed two clusters, one comprised of the northern populations of Mexico, Belize and Guatemala and the other containing the southern Atlantic populations of Nicaragua and Costa Rica. Significant correlation was found between geographical distance and all pairwise measures of genetic divergence, suggesting the importance of regional biogeography and isolation by distance in Mesoamerican mahogany. The results of this study demonstrate greater phylogeographic structure than has been found across Amazon basin S. macrophylla. Our findings suggest a relatively complex Mesoamerican biogeographic history and lead to the prediction that other Central American trees will show similar patterns of regional differentiation.  相似文献   

13.
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.  相似文献   

14.
Nodule samples from 90A. nepalensis individuals were collected at five sites in the Hengduan Mountains. PCR-RFLP analysis of IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. Sizes of thenifD-nifK IGS amplicons and genetic distance between the RFLP patterns from these samples were noticeably different, indicating significant genetic variation in theFrankia population. There were some nodule samples, which produced more than one PCR fragment, and compound RFLP patterns, indicating thatFrankia strains with different PCR-RFLP patterns coexisted in the same host plant under natural conditions. Among the 29 restriction patterns obtained, 5 patterns were found in more than one population and occurred in the majority of samples, while each of the other 24 patterns were represented by only one or two samples and were endemic to a particular population. From the calculatedGst and UPGMA cluster analysis, genetic diversity ofFrankia strains was inferred to be related to climate and glaciation history in the Hengduan Mountains.  相似文献   

15.
Globally destructive crop pathogens often emerge by migrating out of their native ranges. These pathogens are often diverse at their centre of origin and may exhibit adaptive variation in the invaded range via multiple introductions from different source populations. However, source populations are generally unidentified or poorly studied compared to invasive populations. Phytophthora infestans, the causal agent of late blight, is one of the most costly pathogens of potato and tomato worldwide. Mexico is the centre of origin and diversity of P. infestans and migration events out of Mexico have enormously impacted disease dynamics in North America and Europe. The debate over the origin of the pathogen, and population studies of P. infestans in Mexico, has focused on the Toluca Valley, whereas neighbouring regions have been little studied. We examined the population structure of P. infestans across central Mexico, including samples from Michoacán, Tlaxcala and Toluca. We found high levels of diversity consistent with sexual reproduction in Michoacán and Tlaxcala and population subdivision that was strongly associated with geographic region. We determined that population structure in central Mexico has contributed to diversity in introduced populations based on relatedness of U.S. clonal lineages to Mexican isolates from different regions. Our results suggest that P. infestans exists as a metapopulation in central Mexico, and this population structure could be contributing to the repeated re‐emergence of P. infestans in the United States and elsewhere.  相似文献   

16.
Excirolana braziliensis is a dioecious marine isopod that lives in the high intertidal zone of sandy beaches on both sides of Central and South America. It possesses no larval stage and has only limited means of adult dispersal. Indirect estimates of gene flow have indicated that populations from each beach exchange less than one propagule per generation. Multivariate morphometrics have discovered three morphs of this species in Panama, two of them closely related and found on opposite sides of Central America (“C morph” in the Caribbean and “C′ morph” in the eastern Pacific), the third found predominantly in the eastern Pacific (“P morph”). Though the P and C′ morphs are seldom found on the same beach, they have overlapping latitudinal ranges in the eastern Pacific. A related species, Excirolana chamensis, has been described from the Pacific coast of Panama. Each beach contains populations that remain morphologically and genetically stable, but a single drastic change in both isozymes and morphology has been documented. We studied isozymes and multivariate morphology of 10 populations of E. braziliensis and of one population of E. chamensis. Our objective was to assess the degree of genetic and morphological variation, the correlation of divergence on these two levels of integration, the phylogenetic relationships between morphs, and the possible contributions of low vagility, low gene flow, and occasional extinction and recolonization to the genetic structuring of populations. Genetic distance between the P morph, on one hand, and the other two morphotypes of E. braziliensis, on the other, was as high as the distance between E. braziliensis and E. chamensis. Several lines of evidence agree that E. chamensis and the P morph had diverged from other morphs of E. braziliensis before the rise of the Panama Isthmus separated the C and C′ forms, and that the P morph constitutes a different species. A high degree of genetic differentiation also exists between populations of the same morph. On the isozyme level, every population can be differentiated from every other on the basis of at least one diagnostically different locus, regardless of geographical distance or morphological affiliation. Morphological and genetic distances between populations are highly correlated. However, despite the high degree of local variation, evolution of E. braziliensis as a whole has not been particularly rapid; divergence between the C and C′ morphs isolated for 3 million yr by the Isthmus of Panama is not high by the standard of within-morph differentiation or by comparison with other organisms similarly separated. Alleles that are common in one population may be absent from another of the same morph, yet they appear in a different morph in a separate ocean. The high degree of local differentiation, the exclusive occupation of a beach by one genotype with rare arrival of foreign individuals that cannot interbreed freely with the residents, the genetic stability of populations with infrequent complete replacement by another genetic population, and the sharing by morphs of polymorphisms that are not shared by local populations, all suggest a mode of evolution concentrated in rare episodes of extinction and recolonization, possibly coupled with exceptional events of gene flow that help preserve ancestral variability in both oceans.  相似文献   

17.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known about the genetic diversity and population structure of this species in China. We examined the genetic diversity and population structure of six P. clarkii populations using nine polymorphic microsatellites. Among the six populations, Nanjing population showed the highest allele number, allele richness and gene diversity, which is consistent with records indicating Nanjing may be the first site of introduction. In all six populations, significant heterozygote deficit was observed, suggesting founder effects and non-random mating. Analysis of bottleneck under infinite allele model, stepwise mutation model and two-phased model of mutation revealed evidence of a recent bottleneck in all these populations. Pairwise genetic distance analysis, AMOVA and assignment tests demonstrated high genetic differentiation between populations. Pairwise genetic distance did not fit the pairwise geographic distance, suggesting that human mediated dispersal have played a role in the population expansion and genetic differentiation.  相似文献   

18.
An isozyme investigation of the Lisianthius skinneri (Gentianaceae) species complex in central Panama assayed levels of genetic variation within and among isolated populations and was used to reconstruct phylogenetic relationships within the complex. The widespread and low elevation L. skinneri and one derived cloud forest endemic species, L. habuensis, are depauperate in genetic variation. Three other endemic cloud forest species exhibiting larger population sizes and apparently more outcrossed breeding systems have higher levels of heterozygosity but retain low levels of allelic diversity. More than 90% of the genetic variation in the species complex is confined to among-population differentiation rather than witnin-population variation. Isozyme-based relationships within the species complex using both genetic divergence values (Fitch and Margoliash algorithm) and shared allelic states (Nelson and Van Horn algorithm) are identical. This network is not entirely congruent with a previous DNA-based network. Geographical isolation, small population size, low allelic diversity, and high levels of among-population differentiation suggest that repeated instances of founder events and genetic drift have been important in the evolution of this tropical shrub complex.  相似文献   

19.
We isolated eight polymorphic microsatellites from the neotropical tree Luehea seemannii for gene flow and genetic structure studies. We used a streptavidin subtractive enrichment technique to develop a library of CA/GT repeats. Eight loci were screened for diversity from 96 individuals from Barro Colorado Island (BCI) and neighbouring Gigante peninsula in Panama. Luehea seemannii shows moderate levels of genetic diversity within these two populations. Allelic richness ranged from four to nine alleles and averaged 6.44 alleles per locus. Average expected heterozygosity was 0.65 on BCI and 0.60 on Gigante. Results are compared to microsatellite data from another wind‐dispersed gap colonizing species common in Panama.  相似文献   

20.
This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo‐Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea‐level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial‐scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo‐Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号