首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

2.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

3.
Fujimura  Taichiro  Kajiwara  Tadahiko 《Hydrobiologia》1990,204(1):143-149
Protoplasts were isolated from thalli of Ulva pertusa using a mixed enzyme solution of 2.0% Cellulase Onozuka R-10, 2.0% Macerozyme R-10, and 2.0% Driselase. Isolated protoplasts regenerated cell walls, developed into thalli, and propagated in large numbers under aeration in the preparative scale-culture system. Typical bioflavor compounds produced from the regenerated plants, as well as from field-collected plants, were found to be long chain aldehydes, which gave a typical seaweed odor. The long chain aldehydes were formed enzymatically from unsaturated fatty acids and released into the culture fluid. A Percoll/mannitol discontinuous density gradient separation of the heterogeneous protoplasts led to a selection of cell lines with high production of bioflavor. The cells that regenerated from protoplasts were immobilized by polymer matrices such as alginate, -carrageenan, agarose, and agar. Living cells entrapped in alginate beads in aerated cultures survived best. However, the beads started to breakdown after two months. The immobilized cells demonstrated a higher bioflavor production than did the cultured cells.  相似文献   

4.
Summary Anabaena cylindrica was immobilized in calcium alginate beads and was placed in a batch reactor in the presence of a glutamine synthetase inhibitor (methionine sulfoximide). Ammonia was released in the medium during two days with a rate of 0.35 moles h–1mgChl–1. Addition of nitrite to the medium increased the ammonia production as cells used the nitrite reductase pathway to form ammonia. When reactors were placed in anaerobiosis by N2 bubbling, ammonia production was sustained several days and the total ammonia formed was about two fold higher than in aerobiosis. Long term effects of MSX, nitrite and anaerobiosis are discussed.  相似文献   

5.
Alginate microspheres were produced by emulsification/internal gelation of alginate sol dispersed within vegetable oil. Gelification was initiated within the alginate sol by a reduction in pH (7.5 to 6.5), releasing calcium from an insoluble complex. Smooth, spherical beads with the narrowest size dispersion were obtained when using low-guluronic-acid and low-viscosity alginate and a carbonate complex as the calcium vector. A more finely dispersed form of the complexed calcium within the alginate sol promotes a more homogeneous gelification. Microsphere mean diameters ranging from 50 m to 1000 m were obtained with standard deviations ranging from 35% to 45% of the mean.  相似文献   

6.
Summary The flow behaviour of calcium alginate beads in an airlift reactor (ALR) with external loop was dependent on the airflow rate into and the amount of beads in the reactor. The performance of immobilizedArthrobacter simplex for the 1-dehydrogenation of hydrocortisone in the ALR compared favourably to that in a stirred tank reactor. The physical stability of the calcium alginate beads was significantly greater in the ALR.  相似文献   

7.
Summary The effective diffusion coefficient of oxygen, IDe, was determined in different gel support materials (calcium alginate, -carrageenan, gellan gum, agar and agarose) which are generally used for immobilization of cells. The method used was based upon fitting Crank's model on the experimental data. The model describes the solute diffusion from a well-stirred solution into gel beads which are initially free of solute. The effect of the gel concentration on IDe of oxygen in the gel was investigated. The results showed a decreasing IDe for both agar and agarose at increasing gel concentration. In case of calcium alginate and gellan gum, a maximum in IDe at the intermediate gel concentration was observed. It is hypothesized that this phenomenon is due to a changing gelpore structure at increasing gel concentrations. The IDe of oxygen in calcium alginate, -carrageenan and gellan gum varied from 1.5*10–9 to 2.1*10–9 m2s–1 in the gel concentration range of 0.5 to 5% (w/v).  相似文献   

8.
The introduction of bacteriophages could potentially be used as a control method to limit the population size of engineered bacteria that have been introduced into soil. Hence, the ability of a species-specific phage, R2f, to infect and lyse its host, a Pseudomonas fluorescens R2f transposon Tn5 derivative, in soil, was studied. Control experiments in liquid media revealed that productive lysis of host cells by phage R2f occurred when cells were freely suspended, whereas cells present in alginate beads resisted lysis. The presence of nutrients enhanced the degree of lysis as well as the production of phage progeny, both with the suspended cells and with cells escaped from the alginate beads. Experiments in which host cells and phage R2f were introduced into two soils of different texture revealed that host cells were primarily lysed in the presence of added nutrients, and phage reached highest titres in these nutrient-amended soils. Encapsulation of the host cells in alginate beads inhibited lysis by the phage in soil. Populations of free host cells introduced into soil that colonized the rhizosphere of wheat were not substantially lysed by phage R2f. However, P. fluorescens R2f populations colonizing the rhizosphere after introduction in alginate beads were reduced in size by a factor of 1,000. Cells migrating from the alginate beads towards the roots may have been in a state of enhanced metabolic activity, allowing for phage R2f infection and cell lysis. Correspondence to: J.D. van Elsas  相似文献   

9.
Summary Hydantoinase (dihydropyrimidinase E.C. 3.5.2.2) activity of Pseudomonas putida DSM 84 was evaluated using cells immobilized in alginate beads and in a microporous hollow fibre bioreactor. Conversion of dihydrouracil into N-carbamyl--alanine was most efficient with alginate-immobilized cells. A 40 to 45% conversion was obtained in shake flasks and in continuous mode with packed bed columns. The highest volumetric productivity was obtained with a packed bed column operated at a dilution rate of 0.5 h-1 (99 g of product. 100 l-1 per hour). After 96 h the alginate beads began to swell and break apart; no free cells were detected however. Despite some initial loss of cells from the microporous hollow fibre bioreactor, a steady state was later established and maintained for 400 h at dilution rates of 0.1 and 0.25 h-1.  相似文献   

10.
Summary Zoogloea ramigera 115 was immobilized into beads of calcium-alginate and placed into batch air-bubbled column reactors. In the absence of any added nutrients the immobilized bacterium adsorbed Cd from solutions containing levels of 2 and 20 g ml–1 per day, over a period of 21 and 20 days, respectively. Adsorption of Cd from solutions containing 20 g ml–1 Cd was better than 90% for 16 days. Beads treated with Cd at 2 g ml–1 never adsorbed less than 95% of the metal. Alginate adsorbed Cd as well, but inclusion of cells changed the effectiveness of adsorption. Of a 250 g ml–1 Cd solution, alginate adsorbed 70.4% Cd in 60 min whereas alginate plus cells adsorbed 90.5% in the same time span. Temperature had no effect on adsorption by immobilized cells at levels of 2 and 10 g ml–1 Cd. However at higher concentrations, binding was enhanced as temperature increased.Z. ramigera beads were stable during all treatments and for prolonged periods of time (21 days).  相似文献   

11.
Summary Different gelling agents were used to immobilized viable cells in either alginate or -carrageenan gel beads. Based on cell leakage from the gel beads, oxygen and glucose diffusion coefficients and toxicity of the gelling agents, SrCl2 was found to be the best for immobilization of aerobic microbial cells in, not only alginate but also carrageenan gel beads.  相似文献   

12.
Small proteoglycans (PGs) are supposed to play great roles in the assembly of cartilage matrix but the influence of cytokines and growth factors on their synthesis by articular chondrocytes is largely unknown. We investigated whether EL-1 and TGF1 influence the production of small leucine-rich proteoglycans by chondrocytes cultured in a three-dimensional gel, as compared to the common monolayer system.Rabbit articular chondrocytes were cultured in alginate beads for 14 days or as monolayers for 7 days. The effect of 2 ng/ml IIL-1 or TGF1 during the last two days in culture was determined, after [35S]methionine labeling over the last 24 h. Cell-associated and further-removed matrix compartments were separated by centrifugation after sodium citrate/EDTA treatment of alginate beads whereas medium and cell-layer fractions were isolated from monolayer cultures. Total newly synthesized PGs were first isolated by anion-exchange chromatography and the small PGs were further separated from aggrecans by gel-filtration (Sepharose CL-4B) and analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).Addition of TGF1 resulted in an overall rise in neosynthesized small PG content in both culture systems. However, TGF1 significantly increased to the same extent the percentage of small PGs laid down in the cell-associated and the further-removed matrix compartments of the beacls culture (+00%) whereas it auirnted the content of small PGs in the medium (+40%) and reduced that of the cell fraction (+35%) in the monolayer culture. By adding IL-1, the amount of total newly synthesized small PGs was decreased in monolayers while it increased in alginate beads. IL-1 was also shown to change the relative distribution of these molecules in the monolayer system in contrast to the alginate beads culture where the proportions were not significantly altered. Electrophoretic analyes of the 35S-labeled small PGs-containing fractions confirmed these effects at the level of the 45-50 kDa-related core proteins.This study demonstrates that TGF and IL-1 differently influence small PG synthesis of rabbit articular chondrocytes depending on whether they are cultured in alginate beads or in monolayers. Moreover, the regulation of small PG expression appears to be different from that of high-molecular weight aggrecans. As these small molecules are playing major roles in matrix assembly and growth factor regulation, the data may have great relevance to the pathogenesis of osteoarthritis and repair of articular cartilage lesions.  相似文献   

13.
Adventitious shoot primordia were formed on horseradish hairy root cultured in dark. Plantlet formation frequency from the primordia was higher than that from root fragments. Culture for 26 days provided the adventitious shoot primordia, which had the highest potential for plantlet formation (53% explants at 40 days). Benzyladenine supplementation in the dark caused primordium enlargement, but did not increase the number of primordia formed. After adventitious shoot primordia were encapsulated with calcium alginate, kinetin supplementation (2.0–4.0 M) increased the shoot formation frequency (65–80% explants at 20 days) in the light, but also promoted the undesirable formattion of multiple shoots. Supplementation with naphthaleneacetic acid (0.27–5.4 M) in the calcium alginate beads in light enhanced the root emergence from primordia without inhibition of plantlet formation when the encapsulated beads were put on the agar-medium without naphthaleneacetic acid.  相似文献   

14.

Purpose

The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy.

Materials and Methods

hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra.

Results

During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs.

Conclusions

In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation.  相似文献   

15.
A composite gel system has been developed combining the chemical and physical properties of calcium alginate and agarose gels. The results of growing composite gel immobilized hybridoma SPO1 cells in a protein-free medium within a fluidized-bed perfusion bioreactor are presented in this paper. During the continuous operation of this system, the total cell density reached 3.9×107 cells per ml of beads (viability 79.6%). The specific productivity of monoclonal antibody of the immobilized hybridoma cells reached more than 1.5 g per 106 viable cells per hour, compared with 0.5 for non-immobilized viable cells grown in a one liter agitated bioreactor with the same medium. Significant increases in cell metabolic activities, including substrate utilization and byproduct formation, were also observed. Leaching of materials from the beads was evident and the major fraction of released materials was alginate.  相似文献   

16.
Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification.

Trial Registration

ClinicalTrials.gov NCT01528644  相似文献   

17.
A cell surface display system with metalbinding properties was previously developed using CS3 fimbriae, which are hollow tubes 20 nm-thick and 2 nm in diameter. In this study, hybrid CS3 pili were separated from recombinant Escherichia coli and entrapped in calcium alginate gel beads in order to improve their stabilization and also adsorption of heavy metals. The surface morphology of the gel beads containing pili was investigated by scanning electron microscopy (SEM). Immunofluorescence microscopy was employed to confirm the attachment of nanobiofibers to the alginate beads. The effects of three variables (sodium alginate concentration, protein to alginate mass ratio, and bead size) at two levels each on Cd2+ biosorption efficiency were investigated by full factorial experimental design. A second-order polynomial equation modeled the design space for the process response of cadmium removal capacity. The optimal values of the factors were obtained as follows: 1% sodium alginate concentration, 0.25 protein to alginate mass ratio, and a 6 mm bead size. Under these conditions, Cd2+ was adsorbed at 45.45 mg/g to the nanobiofiber. The results indicate that the immobilized recombinant hybrid CS3 pili may be an appropriate biosorbent for removal of heavy metals from polluted aquatic environments.  相似文献   

18.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

19.
Mesophyll protoplasts were isolated from leaves of in vitro grown patchouli (Pogostemon cablin Benth.). The protoplasts were encapsulated in alginate beads, approximately 2–3×103 protoplasts per 25 l bead. Successful colony formation was induced when the protoplast beads were inoculated into a liquid medium supplemented with 10-6 M NAA and 10-5 M BA. The frequency of colony formation was improved greatly by the inclusion of several beads per ml medium. To induce high colony formation for a single bead, it was essential to culture protoplasts in the presence of nurse beads containing actively-growing cells of the same species. Rapid regeneration of plants from protoplast-derived calluses was accomplished by a two-step culture procedure with liquid and then solid media. Gas-chromatographic analyses showed that regenerated plants produced an essential oil comprising a full-set of patchouli sesquiterpenes.Abbreviations BA 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - f. wt. fresh weight - GC gas chromatography - MES 2-(N-morpholino)ethanesulfonic acid - NAA 1-naphthaleneacetic acid  相似文献   

20.
Polyelectrolyte complexes (PECs) of alginate and chitosan were formed by addition of 0.1% alginate solution (pH 6.5) to 0.1% chitosan solution (pH 4.0), and by adding the chitosan solution to the alginate solution under high shearing conditions. Variations in the properties of the polymers and the preparation procedure were studied, and the resultant PEC size, zeta potential (Zp), and pH were determined using dynamic light scattering (DLS), electrophoresis and by measuring turbidity and pH. Tapping mode atomic force microscopy (AFM) was used to examine some of the complexes. The particle size was decreased as the speed and diameter of the dispersing element of the homogenizer was increased. The net charge ratio between chitosan and alginate, and the molecular weights (MW) of both the alginate and chitosan samples were the most significant parameters that influenced the particle size, Zp, and pH. The mixing order also influenced the size of the PECs, however, the Zp and pH were not affected by the mixing order. The stability of the complexes was investigated by incubation at an elevated temperature (37 °C), storage for one month at 4 °C, alteration of the pH of the PEC mixture, and addition of salt to physiological ionic strength (0.15 M NaCl). The properties of the PEC could be affected according to the molecular properties of the polyelectrolytes selected and the preparation procedures used. The resultant PEC sizes and properties of the complex were rationalised using a core-shell model for the structure of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号