首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettuce seeds cv. Noran germinate at 23°C in light as well as in darkness. However dormancy can be induced either by a long exposure (24 h) to far-red radiation or by an exposure of 48–72 h to a temperature of 37°C. The difference in response of these two types of dormant seeds to conditions inducing germination indicate that in both types Pfr is inactivated, but that a dark process required for immediate action of Pfr does not proceed at 37°C as it does during far-red radiation.  相似文献   

2.
Phenylalanine ammonia-lyase (PAL) induction in UVB-exposed plants leads to an increased synthesis of UV-absorbing phenols. As phenols, including anthocycanins, are linked to many protective mechanisms in plants, we tested the hypothesis that UVB-induced phenol accumulation, mediated by PAL, may confer freezing tolerance in jack pine ( Pinus banksiana Lamb) seedlings. The hypothesis was tested by applying UVB in the presence and absence of the PAL-inhibitor, 2-aminoindan-2-phosphonic acid (AIP). Jack pine seedlings were grown for 3 weeks with and without 10 µ M aqueous AIP. Each treatment was then divided into two groups. One group received near-ambient UVB (5.5 kJ m−2 day−1of biologically effective radiation) for up to 30 h. A second, control group of seedlings received no UVB. Anthocyanin concentration declined by > 99% in PAL-inhibited seedlings and other methanol-extractable UV-absorbing phenols declined by > 48%, relative to the controls. A 20-h exposure to UVB increased seedling freezing (−15°C) tolerance in the absence of the PAL-inhibitor, as shown by a 30% reduction in membrane injury, determined by electrolyte leakage measurements. In PAL-inhibited seedlings, by contrast, the same UVB pre-treatment increased freezing injury by 48%. A longer (30 h) UVB exposure was damaging to both AIP-treated and untreated seedlings. Root feeding with 10 µ M AIP during a 3-week exposure of older (6-month-old) seedlings similarly reduced phenol accumulation in UVB-exposed seedlings. The decline in phenol production in PAL-inhibited seedlings correlated with increased freezing injury. These results suggest a role for ambient UVB in seedling frost hardiness, mediated by a PAL-induced production of phenolic compounds.  相似文献   

3.
Responses of plants in polar regions to UVB exposure: a meta-analysis   总被引:1,自引:0,他引:1  
We report a meta‐analysis of data from 34 field studies into the effects of ultraviolet B (UVB) radiation on Arctic and Antarctic bryophytes and angiosperms. The studies measured plant responses to decreases in UVB radiation under screens, natural fluctuations in UVB irradiance or increases in UVB radiation applied from fluorescent UV lamps. Exposure to UVB radiation was found to increase the concentrations of UVB absorbing compounds in leaves or thalli by 7% and 25% (expressed on a mass or area basis, respectively). UVB exposure also reduced aboveground biomass and plant height by 15% and 10%, respectively, and increased DNA damage by 90%. No effects of UVB exposure were found on carotenoid or chlorophyll concentrations, net photosynthesis, Fv/Fm or ΦPSII, belowground or total biomass, leaf mass, leaf area or specific leaf area (SLA). The methodology adopted influenced the concentration of UVB absorbing compounds, with screens and natural fluctuations promoting significant changes in the concentrations of these pigments, but lamps failing to elicit a response. Greater reductions in leaf area and SLA, and greater increases in concentrations of carotenoids, were found in experiments based in Antarctica than in those in the Arctic. Bryophytes typically responded in the same way as angiosperms to UVB exposure. Regression analyses indicated that the percentage difference in UVB dose between treatment and control plots was positively associated with concentrations of UVB absorbing compounds and carotenoids, and negatively so with aboveground biomass and leaf area. We conclude that, despite being dominated by bryophytes, the vegetation of polar regions responds to UVB exposure in a similar way to higher plant‐dominated vegetation at lower latitudes. In broad terms, the exposure of plants in these regions to UVB radiation elicits the synthesis of UVB absorbing compounds, reduces aboveground biomass and height, and increases DNA damage.  相似文献   

4.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

5.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

6.
The photosynthetic oxygen evolution of Caulerpa serrulata was determined with oxygen electrodes. The effects of light and temperature on the growth and regeneration of fragmented C. serrulata thalli were analyzed. The regenerating rate and establishment of different sizes and portions of C. serrulata were studied. The results showed that the light saturation point of C. serrulata was 200 μmol photons/m2 per s and the optimum growth temperature was 25-30℃. Under these conditions, the maximum photosynthetic oxygen evolution rate was 15.1:±0.29 mg O2/mg Chl a/h, the growth rate and elongation rate reached the highest values, 4.67±0.09 mg FW/d and 0.78±0.01 mm/d, respectively. The fragmented C. serrulata thalli was regenerated at 20-35℃ and survived at 15℃ and 200 μmnol photons/m2 per s. A different survival rate was detected according to fragment size. All of these results indicated that C. serrulata was a candidate to become an invasive species if introduced into a new place. Therefore, we should pay more attention to C. serrulata for its potential threat to marine ecosystem when it is sold for aquarium use.  相似文献   

7.
1. The effects of ultraviolet-B (UVB-enhanced) radiation on the production of photosynthates (lipid, protein, polysaccharide and low molecular weight compounds) was examined for three species of algae. Cryptomonas sp., Nitzschia palea and Synechococcus elongatus were selected as representatives of the Cryptophyceae, Bacilliarophyceae and Cyanobacteria, respectively.
2. Laboratory experiments were performed at several UVBweighted dose rates ranging from 0.018 to 0.391 mW cm–2. These dose rates span the range of dose rates used in other studies.
3. Effects on the overall photosynthetic rate were observed, even at relatively low UVBweighted dose rates (0.047 mW cm–2).
4. The effect of UVB radiation on the fixation of carbon into the main macromolecular pools differed, depending not only on the dosage but on the species examined. However, the observed inhibitory effects were generally non-stochastic. In addition, within each species there were differences in the apparent sensitivity of the various fractions to inhibition by UVB radiation.
5. These results suggest that exposure to UVB radiation has the potential to alter the relative allocation of recently fixed carbon to lipid, protein, polysaccharide and low molecular weight compounds in algae in a species-specific manner.  相似文献   

8.
The objective of the study was to investigate the interactive effects of elevated atmospheric carbon dioxide concentration, [CO2], and temperature on the wood properties of mature field-grown Norway spruce ( Picea abies (L.) Karst.) trees. Material for the study was obtained from an experiment in Flakaliden, northern Sweden, where trees were grown for 3 years in whole-tree chambers at ambient (365 μmol mol−1) or elevated [CO2] (700 μmol mol−1) and ambient or elevated air temperature (ambient +5.6 °C in winter and ambient +2.8 °C in summer). Elevated temperature affected both wood chemical composition and structure, but had no effect on stem radial growth. Elevated temperature decreased the concentrations of acetone-soluble extractives and soluble sugars, while mean and earlywood (EW) cell wall thickness and wood density were increased. Elevated [CO2] had no effect on stem wood chemistry or radial growth. In wood structure, elevated [CO2] decreased EW cell wall thickness and increased tracheid radial diameter in latewood (LW). Some significant interactions between elevated [CO2] and temperature were found in the anatomical and physical properties of stem wood (e.g. microfibril angle, and LW cell wall thickness and density). Our results show that the wood material properties of mature Norway spruce were altered under exposure to elevated [CO2] and temperature, although stem radial growth was not affected by the treatments.  相似文献   

9.
In Antarctica ozone depletion is highest during spring, coinciding with the reproduction of many seaweed species. Propagules are the life-stage of an alga most susceptible to environmental perturbations. Therefore, fertile thalli of Iridaea cordata (Turner) Bory (Rhodophyta) were collected in the eulittoral of King George Island (Antarctica) to examine spore susceptibility to ultraviolet radiation (UVR). In the laboratory, freshly released tetraspores were exposed to photosynthetically active radiation (PAR) (400–700 nm), PAR+UV-A (320–700 nm) or PAR+UV-A+UV-B (280–700 nm). Photosynthetic efficiency was measured during 1–8 h of exposure and after 48 h of recovery. Additionally, mycosporine-like amino acids (MAAs) and DNA damage were determined. Saturating irradiance of photosynthesis of freshly released tetraspores was 57 µmol photons m−2 s−1. Exposure to increasing fluence of PAR reduced photosynthetic efficiency. UVR further decreased the photosynthetic efficiencies of the tetraspores but spores were able to recover completely after UVR exposure and 2 days post-cultivation under low PAR. DNA damage was minimal and lesions were effectively repaired under photoreactivating light. Concentrations of the MAAs shinorine and palythine were higher in tetraspores treated with UVR than in spores only exposed to PAR. Generally, the tetraspores show a good UV tolerance. This flexible response of the tetraspores of this species to changing radiation conditions enables the alga to grow along a considerable depth gradient from the sublittoral to the eulittoral where they can be exposed to enhanced UVBR under conditions of stratospheric ozone depletion.  相似文献   

10.
Embryos of Danio rerio are highly susceptible to extracts of the plants Tephrosia vogelii and Asystasia vogeliana . The concentration of the dried extracts at which 50% of the embryos were affected (EC50) after 24 h exposure were 320 and 572 μg l−1, respectively; corresponding 50% mortality (LC50) values after 48 h exposure were 493 and 869 μg l−1. Results indicate that the use of these ichthyotoxic plants might have a severe impact on the survival of fish larvae in the field.  相似文献   

11.
Combined effects of UVB radiation and CO2 concentration on plant reproductive parts have received little attention. We studied morphological and physiological responses of siliquas and seeds of canola (Brassica napus L. cv. 46A65) to UVB and CO2 under four controlled experimental conditions: UVB radiation (4.2 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1) (control); UVB radiation (4.2 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1); no UVB radiation (0 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1); and no UVB radiation (0 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1). UVB radiation affected the outer appearance of siliquas, such as colour, as well as their anatomical structures. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 reduced the size of seeds, which had different surface patterns than those from no UVB radiation. At both CO2 levels, 4.2 kJ m−2 d−1 of UVB decreased net CO2 assimilation (AN) and water use efficiency (WUE), but had no effect on transpiration (E). Elevated CO2 increased AN and WUE, but decreased E, under both UVB conditions. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 decreased chlorophyll fluorescence, total chlorophyll (Chl), Chl a and Chl b, but had no effect on the ratio of Chl a/b and the concentration of UV-screening pigments. Elevated CO2 increased total Chl and the concentration of UV-screening pigments under 4.2 kJ m−2 d−1 of UVB radiation. Neither UVB nor CO2 affected wax content of siliqua surface. Many significant relationships were found between the above-mentioned parameters. This study revealed that UVB radiation exerts an adverse effect on canola siliquas and seeds, and some of the detrimental effects of UVB on these reproductive parts can partially be mitigated by CO2.  相似文献   

12.
The effects of elevated partial pressure of CO2 ( p CO2) and temperature, alone and in combination, on survival, calcification and dissolution were investigated in the crustose coralline alga Lithophyllum cabiochae . Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C) and at ambient [ca. 400 parts per million (ppm)] or elevated p CO2 (ca. 700 ppm). Algal necroses appeared at the end of summer under elevated temperature first at 700 ppm (60% of the thallus surface) and then at 400 ppm (30%). The death of algae was observed only under elevated temperature and was two- to threefold higher under elevated p CO2. During the first month of the experiment, net calcification was significantly reduced under elevated p CO2. At the end of the summer period, net calcification decreased by 50% when both temperature and p CO2 were elevated while no effect was found under elevated temperature and elevated p CO2 alone. In autumn and winter, net calcification in healthy algae increased with increasing temperature, independently of the p CO2 level, while necroses and death in the algal population caused a net dissolution at elevated temperature and p CO2. The dissolution of dead algal thalli was affected by elevated p CO2, being two- to fourfold higher than under ambient p CO2. These results suggest that net dissolution is likely to exceed net calcification in L. cabiochae by the end of this century. This could have major consequences in terms of biodiversity and biogeochemistry in coralligenous communities dominated by these algae.  相似文献   

13.
Mucor circinelloides LU M40 produced 12·2 mU ml−1 of linamarase activity when grown in a 3 l fermenter in the following optimized medium (g l−1 deionized water): pectin, 10·0; (NH4)2SO4,
1·0; KH2PO4, 2·0; Na2HPO4, 0·7; MgSO4.7H2O, 0·5; yeast extract, 1·0; Tween-80,
1·0, added after 48 h of fermentation. The purified linamarase was a dimeric protein with a molecular mass of 210 kDa; the enzyme showed optimum catalytic activity at pH 5·5 and 40 °C and had a wide range (3·0–7·0) of pH stability. The enzyme substrate specificity on plant cyanogenic glycosides was wide; the Km value for linamarin was 2·93 mmol l−1. The addition, before processing, of the fungal crude enzyme to cassava roots facilitated and shortened detoxification; after 24 h of fermentation, all cyanogenic glycosides were hydrolysed.  相似文献   

14.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

15.
Aims:  The aim of this study was to investigate changes in Salmonella and total viable count (TVC) survival on beef carcass surfaces stored for 72 h under different combinations of relative humidity (i.e. RH 75% or 96%) and temperature (5°C or 10°C).
Methods and Results:  The influence of low water activity ( a w) and temperature on the survival and growth of Salmonella enterica serovar Typhimurium DT104 and the aerobic mesophilic flora on meat pieces from different sites on beef carcasses was investigated, under controlled conditions (75% or 96% RH; 5 or 10°C) in an environmental cabinet. Salmonella counts declined during storage at low a w (75% RH) conditions at 5°C or 10°C. Salmonella counts increased during storage at high a w (96% RH) at 10°C only. At 5°C, TVCs increased during storage at high a w, but not at low a w. TVCs increased on all samples from carcasses stored at high or low a w at 10°C, except those samples taken from areas of surface fat.
Conclusions:  This suggests that substrate composition dictates growth rates under low a w conditions. The results are discussed in terms of the possible protective effects of substrate osmolyte accumulation in bacterial survival and/or growth.
Significance and Impact of the Study:  The data obtained in this study provides useful insights on the influence of a w and temperature on pathogen survival on meat surfaces at chill temperature.  相似文献   

16.
We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [ Picea mariana (Mill.) B.S.P.] grown at 22/14 °C [low temperature (LT)] or 30/22 °C [high temperature (HT)] day/night temperatures. Net CO2 assimilation rates ( A net) were greater in LT than in HT seedlings below 30 °C, but were greater in HT seedlings above 30 °C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO2 assimilation rates ( A gross) was lower in HT than in LT seedlings below 30 °C, but was similar above 30 °C. The reduced A gross of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates ( V cmax) and lower maximum electron transport rates ( J max). Growth treatment did not affect V cmax :  J max. Modelling of the CO2 response of photosynthesis indicated that LT seedlings at 40 °C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A net was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 °C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.  相似文献   

17.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

18.
Depending on the environmental conditions, imbibed seeds survive subzero temperatures either by supercooling or by tolerating freezing-induced desiccation. We investigated what the predominant survival mechanism is in freezing canola ( Brassica napus cv. Quest) and concluded that it depends on the cooling rate. Seeds cooled at 3°C h−1 or faster supercooled, whereas seeds cooled over a 4-day period to −12°C and then cooled at 3°C h−1 to−40°C did not display low temperature exotherms. Both differential thermal analysis and nuclear magnetic resonance (NMR) spectroscopy confirmed that imbibed canola seeds undergo freezing-induced desiccation at slow cooling rates. The freezing tolerance of imbibed canola seed (LT50) was determined by slowly cooling to −12°C for 48 h, followed with cooling at 3°C h−1 to −40°C, or by holding at a constant −6°C (LD50). For both tests, the loss in freezing tolerance of imbibed seeds was a function of time and temperature of imbibition. Freezing tolerance was rapidly lost after radicle emergence. Seeds imbibed in 100 μ M abscisic acid (ABA), particularly at 2°C, lost freezing tolerance at a slower rate compared with water-imbibed seeds. Seeds imbibed in water either at 23°C for 16 h, or 8°C for 6 days, or 2°C for 6 days were not germinable after storage at −6°C for 10 days. Seeds imbibed in ABA at 23°C for 24 h, or 8°C for 8 days, or 2°C for 15 days were highly germinable after 40 days at a constant −6°C. Desiccation injury induced at a high temperature (60°C), as with injury induced by freezing, was found to be a function of imbibition temperature and time.  相似文献   

19.
Aims:  The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H2) producers from digested household solid wastes.
Methods and Results:  A strict anaerobic extreme thermophilic H2 producing bacterial culture was enriched from a lab-scale digester treating household wastes at 70°C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80°C and an optimal pH 8·1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon sources. Growth on glucose produced acetate, H2 and carbon dioxide. Maximal H2 production rate on glucose was 1·1 mmol l−1 h−1 with a maximum H2 yield of 1·9 mole H2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated to the genera Bacillus and Clostridium. Relative abundance of the culture members, assessed by fluorescence in situ hybridization, were 87 ± 5% and 13 ± 5% for Bacillus and Clostridium , respectively.
Conclusions:  An extreme thermophilic, strict anaerobic, mixed microbial culture with H2-producing potential was enriched from digested household wastes.
Significance and Impact of the Study:  This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H2 production from complex organic wastes.  相似文献   

20.
A recent study identified a fungal isolate from the Antarctic leafy liverwort Cephaloziella varians as the ericoid mycorrhizal associate Rhizoscyphus ericae. However, nothing is known about the wider Antarctic distribution of R. ericae in C. varians, and inoculation experiments confirming the ability of the fungus to form coils in the liverwort are lacking. Using direct isolation and baiting with Vaccinium macrocarpon seedlings, fungi were isolated from C. varians sampled from eight sites across a 1875-km transect through sub- and maritime Antarctica. The ability of an isolate to form coils in aseptically grown C. varians was also tested. Fungi with 98-99% sequence identity to R. ericae internal transcribed spacer (ITS) region and partial large subunit ribosomal (r)DNA sequences were frequently isolated from C. varians at all sites sampled. The EF4/Fung5 primer set did not amplify small subunit rDNA from three of five R. ericae isolates, probably accounting for the reported absence of the fungus from C. varians in a previous study. Rhizoscyphus ericae was found to colonize aseptically-grown C. varians intracellularly, forming hyphal coils. This study shows that the association between R. ericae and C. varians is apparently widespread in Antarctica, and confirms that R. ericae is at least in part responsible for the formation of the coils observed in rhizoids of field-collected C. varians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号