首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.  相似文献   

2.
Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18–25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.  相似文献   

3.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

4.
The purpose of this study was to objectively assess the response of car passengers to lateral accelerations. Surface EMG signals were collected bilaterally from the cervical erector spinae (CES), latissimus dorsi (LD), erector spinae (ES), external oblique (EO), and vastus lateralis (VL) muscles of 10 subjects. Lateral acceleration was also recorded. Three chassis-seat configurations AA, BA and BB were tested, with the first letter denoting the chassis and the second the seat. SEMG signals were often contaminated by noise, and were, therefore, denoised using the methods explained in part I. Reciprocal phasic activity was observed for all muscles except for the EO, and the reaction of passengers to lateral accelerations was interpreted as a bust torsion. The RMS of EMG segments was used as an indication of muscle activity. Muscle activation of VL and ES were significantly affected by the configuration tested (p < 0.05), with greater activation levels observed for the chassis A than for the chassis B. Such a finding implies that greater roll requires greater muscle activity, thus resulting in less comfortable vehicles. Therefore, SEMG can be used to provide an objective measure of discomfort in passengers subjected to lateral accelerations in a car seat.  相似文献   

5.
A segmentation approach to long duration surface EMG recordings.   总被引:1,自引:0,他引:1  
The purpose of this study was to develop an automatic segmentation method in order to identify postural surface EMG segments in long-duration recordings. Surface EMG signals were collected from the cervical erector spinae (CES), erector spinae (ES), external oblique (EO), and tibialis anterior (TA) muscles of 11 subjects using a bipolar electrode configuration. Subjects remained seated in a car seat over the 150-min data-collection period. The modified dynamic cumulative sum (MDCS) algorithm was used to automatically segment the surface EMG signals. Signals were rejected by comparison with an exponential mathematical model of the spectrum of a surface EMG signal. The average power ratio computed between two successive retained segments was used to classify segments as postural or surface EMG. The presence of a negative slope of a regression line fitted to the median frequency values of postural surface EMG segments was taken as an indication of fatigue. Alpha level was set at 0.05. The overall classification error rate was 8%, and could be performed in 25 min for a 150-min signal using a custom-built software program written in C (Borland Software Corporation, CA, USA). This error rate could be enhanced by concentrating on the rejection method, which caused most of the misclassification (6%). Furthermore, the elimination of non-postural surface EMG segments by the use of a segmentation approach enabled muscular fatigue to be identified in signals that contained no evidence of fatigue when analysed using traditional methods.  相似文献   

6.
Transitory tasks, such as gait termination, involve interactions between neural and biomechanical factors that challenge postural stability and head stabilization patterns in older adults. The aim of the study was to compare upper body patterns of acceleration during planned gait termination at different speeds between young and older women. Ten young and 10 older women were asked to carry out three gait termination trials at slow, comfortable and fast speed. A stereophotogrammetric system and a 15-body segments model were used to calculate antero-posterior whole-body Center of Mass (AP CoM) speed and to reconstruct the centroids of head, trunk and pelvis segments. RMS of three-dimensional linear accelerations were calculated for each segment and the transmission of acceleration between two segments was expressed as a percentage difference. Older women reported lower AP CoM speed and acceleration RMS of the three upper body segments than young women across the three speed conditions. A lower pelvis-to-trunk attenuation of accelerations in the transverse plane was observed in older compared to young women, and mainly in the medio-lateral direction. As possible explanations, older women may not need to reduce acceleration as young women because of their lower progression speed and the subsequent acceleration at upper body levels. On the other hand, older women may prioritize a decrease in the whole body progression speed at expense of the involvement of upper body segments. This limits the attenuation of the accelerations, particularly in the transverse plane, implying an increased dynamic unbalance in performing this transitory task.  相似文献   

7.
We have previously demonstrated that fatigue at different locations impacts joint angles, angular variability, and coordination variability differently. However, the neuromuscular control aspects underlying these kinematic changes have never been demonstrated. Seventeen young adults (8 males) were recruited. Electromyographic electrodes were placed on: upper trapezius, pectoralis major, anterior and middle deltoid, biceps and triceps brachii, and left and right erector spinae. Subjects performed the repetitive pointing task (RPT) at 1 Hz for 30 s before and after localized fatigue tasks, which consisted of one shoulder, one elbow and one lower back isometric fatiguing protocols until exhaustion in randomized order. Electromyographic amplitude (RMS), variability (SD) and mean power frequency (MnPF) were calculated for each of the pre-fatigue and post-fatigue RPT trials. There were sex × fatigue location interaction effects on upper trapezius RMS (p = 0.038) with males’ values increasing the most after shoulder fatigue. Females’ triceps brachii RMS was greater compared to males after shoulder, elbow, and trunk fatigue (p = 0.003, p = 0.001 and p = 0.007 respectively). There were sex × fatigue location effects on left erector spinae MnPF (p = 0.011) with males and females’ values decreasing the most after trunk fatigue, but more so in males. Results demonstrate that males and females compensate differently during a repetitive pointing task when their elbows, shoulders and trunks are locally fatigued, which could have implications on sex-specific workplace injury risks. See Table 1 for acronyms.  相似文献   

8.
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2° of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4° and 4.9° during normal gait that had a 45° flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.  相似文献   

9.
The capacity to maintain upright balance by minimising upper body oscillations during walking, also referred to as gait stability, has been associated with a decreased risk of fall. Although it is well known that fall is a common complication after stroke, no study considered the role of both trunk and head when assessing gait stability in this population. The primary aim of this study was to propose a multi-sensor protocol to quantify gait stability in patients with subacute stroke using gait quality indices derived from pelvis, sternum, and head accelerations. Second, the association of these indices with the level of walking ability, with traditional clinical scale scores, and with fall events occurring within the six months after patients’ dismissal was investigated. The accelerations corresponding to the three abovementioned body levels were measured using inertial sensors during a 10-Meter Walk Test performed by 45 inpatients and 25 control healthy subjects. A set of indices related to gait stability were estimated and clinical performance scales were administered to each patient. The amplitude of the accelerations, the way it is attenuated/amplified from lower to upper body levels, and the gait symmetry provide valuable information about subject-specific motor strategies, discriminate between different levels of walking ability, and correlate with clinical scales. In conclusion, the proposed multi-sensor protocol could represent a useful tool to quantify gait stability, support clinicians in the identification of patients potentially exposed to a high risk of falling, and assess the effectiveness of rehabilitation protocols in the clinical routine.  相似文献   

10.
The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.  相似文献   

11.
Prone hip extension has been used as a self-perturbation task to test the stability of the lumbopelvic region. However, the relationship between recruitment patterns in the hip and trunk muscles and lumbopelvic kinematics remains unknown. The present study aimed to examine if the balance of hip and trunk muscle activities are related to pelvic motion and low back muscle activity during prone hip extension. Sixteen healthy participants performed prone hip extension from 30° of hip flexion to 10° of hip extension. Surface electromyography (of the gluteus maximus, semitendinosus, rectus femoris, tensor fasciae latae, multifidus, and erector spinae) and pelvic kinematic measurements were collected. Results showed that increased activity of the hip flexor (tensor fasciae latae) relative to that of hip extensors (gluteus maximus and semitendinosus) was significantly associated with increased anterior pelvic tilt during hip extension (r=0.52). Increased anterior pelvic tilt was also significantly related to the delayed onset timing of the contralateral and ipsilateral multifidus (r=0.57, r=0.53) and contralateral erector spinae (r=0.63). Additionally, the decrease of the gluteus maximus activity relative to the semitendinosus was significantly related to increased muscle activity of the ipsilateral erector spinae (r=-0.57). These results indicate that imbalance between the agonist and antagonist hip muscles and delayed trunk muscle onset would increase motion in the lumbopelvic region.  相似文献   

12.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

13.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

14.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

15.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

16.
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.  相似文献   

17.
Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.  相似文献   

18.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   

19.
Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m×3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.  相似文献   

20.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号