首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cocultures of Salmonella strains carrying or lacking specific prophages undergo swift composition changes as a result of phage-mediated killing of sensitive bacteria and lysogenic conversion of survivors. Thus, spontaneous prophage induction in a few lysogenic cells enhances the competitive fitness of the lysogen population as a whole, setting a selection regime that forces maintenance and spread of viral DNA. This is likely to account for the profusion of prophage sequences in bacterial genomes and may contribute to the evolutionary success of certain phylogenetic lineages.  相似文献   

2.
(1) The proportion of infected B. megatherium cells which develop lysogenic colonies depends on the number and kind of infecting virus particles and on the culture medium in which the cells are growing. (2) Cells infected with 100 or more T virus particles (from megatherium 899) in yeast extract peptone disintegrate, produce very few virus particles, and less than one lysogenic colony per 107 infected cells. Cells infected with one or a few particles produce 500 to 1000 virus particles each and about 30 lysogenic colonies per 107 infected colonies. (3) T phage obtained from lysogenic magatherium KM cultures produces many more lysogenic cells than does the original megatherium 899 virus. (4) Cells infected with megatherium 899 T virus in peptone medium and then transferred to asparagine medium give rise to 106 lysogenic colonies per 107 infected cells and this transformation will occur even after the infected cells have been in peptone for 60 to 90 minutes and are beginning to produce virus particles. (5) Continued growth of KM strain with either C or T virus from megatherium 899 for several hundred generations in the steady state apparatus results in a lysogenic strain which produces several different types of virus.  相似文献   

3.
4.
We investigated the fate of human immunodeficiency virus type 1 (HIV-1) viral DNA in infected peripheral blood lymphocytes and immortalized T-cell lines by using a replication-defective HIV-1. We observed that integrated HIV-1 DNA and viral gene expression decrease over time. A frameshift mutation in vpr resulted in maintenance of the HIV-1 provirus and stable persistence of viral expression. Transfection of vpr together with the neomycin resistance gene in the absence of other viral genes decreased the formation of geneticin-resistant colonies, indicating either a cytotoxic or a cytostatic effect upon cells. Therefore, maintenance of HIV-1 infection within an infected proliferating population is due to two competing processes, the rate of viral spread and the degree of cell growth inhibition and/or death induced by Vpr.  相似文献   

5.
Abstract. The persistence of cell lifetimes during about 10 successive cell generations was investigated by comparing the number of cells in primary colonies and in secondary colonies derived from primary colonies. Primary colonies were grown from single cells for 3 or 4 days (a time equivalent to an average of five cell generations) and the number of cells in each primary colony determined. Cells in each primary colony were dispersed to initiate secondary colonies, grown for the same time, and the number of cells in secondary colonies determined. Several criteria were used to compare primary and related secondary colonies, the most informative was found to be regression and correlation coefficients between number of cells in primary colonies and mean numbers of cells in related secondary colonies. For two non-transformed mouse fibroblast cell lines, NIH 3T3 and BALB 3T3, the regression and correlation coefficients of cell number in primary and secondary colonies were positive. This suggests inheritance of cell lifetimes over many cell generations. After the addition of an activated ras oncogene (human cellular Harvey ras , or viral Kirsten ras ) some regression and correlation coefficients changed in magnitude but all remained positive. Comparison of experimental data and the results of computer simulations suggest that several models of inheritance of cell lifetimes are not adequate to explain the results, including a model of independence between lifetimes of mother and daughter cells and the common model that describes daughter cells as inheriting the lifetime of their mother with deviation. Simulations do suggest that cell lifetimes are inherited within clones as deviation from the lifetime of the initial cell, and that the ras oncogene does not destroy persistence within clones but does increase heterogeneity of cell lifetimes.  相似文献   

6.
Bam35, a temperate double-stranded DNA bacteriophage with a 15-kb linear genome, infects gram-positive Bacillus thuringiensis cells. Bam35 morphology and genome organization resemble those of PRD1, a lytic phage infecting gram-negative bacteria. Bam35 and PRD1 have an outer protein coat surrounding a membrane that encloses the viral DNA. We used electrochemical methods to investigate physiological changes of the lysogenic and nonlysogenic hosts during Bam35 DNA entry and host cell lysis. During viral DNA entry, there was an early temporal decrease of membrane voltage associated with K+ efflux that took place when either lysogenic or nonlysogenic hosts were infected. Approximately 40 min postinfection, a second strong K+ efflux was registered that was proposed to be associated with the insertion of holin molecules into the plasma membrane. This phenomenon occurred only when nonlysogenic cells were infected. Lysogenic hosts rarely were observed entering the lytic cycle as demonstrated by thin-section electron microscopy.  相似文献   

7.
8.
There were differences in the way the lysogenic strain N of B. mycoides and the parent indicator strain grew on nutrient agar and in nutrient broth. 1. On agar, the indicator culture traveled more quickly over the agar surface than the phage-carrying strain; the total extent of spread was greater. 2. In broth, the indicator strain grew diffusely throughout the liquid, the lysogenic cells in clumps. The virus-infected strain appeared to grow more slowly. This may reflect (a) the effect of aggregation on the generation time of the lysogenic strain, (b) an active lytic process in the lysogenic population which is further enhanced by the effect of clump formation on the environment of the cell.  相似文献   

9.
The current consensus concerning the prevalence of lytic and lysogenic phage life cycles in aquatic systems is that the host physiological state may influence viral strategies, lysogeny being favoured when hosts have reduced metabolic rates. We explored this hypothesis, by following phage cycle dynamics, host physiological state and metabolic activity over an annual cycle in three lakes subjected to strong seasonal fluctuations, including 4–5 months of ice cover. We observed marked seasonal dynamics of viral and bacterial communities, with low bulk and cell‐specific bacterial metabolism in winter, and a dramatic increase in injured bacteria under the ice cover in all lakes. This period was accompanied by contrasting patterns in the proportion of lysogenic cells. In the eutrophic lake, times of low bacterial metabolic rates and high proportion of damaged cells corresponded to highest levels of lysogeny, supporting the notion that hosts are a ‘refuge’ for viruses. In the two unproductive lakes, peaks of injured cells corresponded to a minimum of lysogeny, suggesting an ‘abandon the sinking ship’ response, where the prophage replicates before the loss of genome. We suggest that these diverging responses to the host physiological state are not contradictory, but rather that there may be thresholds of cell stress and metabolic activity leading to one or the other response.  相似文献   

10.
The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.  相似文献   

11.
For a eukaryotic virus to successfully infect and propagate in cultured cells several events must occur: the virion must identify and bind to its cellular receptor, become internalized, uncoat, synthesize viral proteins, replicate its genome, assemble progeny virions, and exit the host cell. While these events are taking place, intrinsic host defenses activate in order to defeat the virus, e.g., activation of the interferon system, induction of apoptosis, and attempted elicitation of immune responses via chemokine and cytokine production. As a first step in developing an imaging methodology to facilitate direct observation of such complex host/virus dynamics, we have designed an immunofluorescence-based system that extends the traditional plaque assay, permitting simultaneous quantification of the rate of viral spread, as indicated by the presence of a labeled viral protein, and cell death in vitro, as indicated by cell loss. We propose that our propagation and cell death profiles serve as phenotypic read-outs, complementing genetic analysis of viral strains. As our virus/host system we used vesicular stomatitis virus (VSV) propagating in hamster kidney epithelial (BHK-21) and murine astrocytoma (DBT) cell lines. Viral propagation and death profiles were strikingly different in these two cell lines, displaying both very different initial titer and cell age effects. The rate of viral spread and cell death tracked reliably in both cell lines. In BHK-21 cells, the rate of viral propagation, as well as maximal spread, was relatively insensitive to initial titer and was roughly linear over several days. In contrast, viral plaque expansion in DBT cells was contained early in the infections with high titers, while low titer infections spread in a manner similar to the BHK-21 cells. The effect of cell age on infection spread was negligible in BHK-21 cells but not in DBTs. Neither of these effects was clearly observed by plaque assay.  相似文献   

12.
Motility in mycobacteria was described for the first time in 1999. It was reported that Mycobacterium smegmatis and Mycobacterium avium could spread on the surface of solid growth medium by a sliding mechanism and that the presence of cell wall glycopeptidolipids was essential for motility. We recently reported that Mycobacterium vaccae can also spread on growth medium surfaces; however, only smooth colonies presented this property. Smooth colonies of M. vaccae do not produce glycopeptidolipids but contain a saturated polyester that is absent in rough colonies. Here, we demonstrate that Mycobacterium chubuense, Mycobacterium gilvum, Mycobacterium obuense, and Mycobacterium parafortuitum, which are phylogenetically related to M. vaccae, are also motile. Such motility is restricted to smooth colonies, since natural rough mutants are nonmotile. Thin-layer chromatography analysis of the content of cell wall lipids confirmed the absence of glycopeptidolipids. However, compounds like the above-mentioned M. vaccae polyester were detected in all the strains but only in smooth colonies. Scanning electron microscopy showed great differences in the arrangement of the cells between smooth and rough colonies. The data obtained suggest that motility is a common property of environmental mycobacteria, and this capacity correlates with the smooth colonial morphotype. The species studied in this work do not contain glycopeptidolipids, so cell wall compounds or extracellular materials other than glycopeptidolipids are implicated in mycobacterial motility. Furthermore, both smooth motile and rough nonmotile variants formed biofilms on glass and polystyrene surfaces.  相似文献   

13.
The effect was studied of retinoic acid (RA) on cell-cell adhesiveness in Ag8-1 cells, which are piling-up colony-forming cells cloned from a Syrian hamster kidney fibroblastic cell line BHK21/C13. From the piled-up part of the colonies grown with RA (10 microM), many cells were dissociated by mere shaking or pipetting. The dissociated cells soon adhered to and spread on plastic surfaces in the presence of RA. The number of cells per colony increased almost at the same rate in the presence or absence of RA. The effect of RA on the appearance of cells dissociable from colonies was noticeable above 0.1 microM, prominent from 1 to 10 microM, greater when added in the earlier stages of colony formation and negligible when added just before the dissociation assay. Single cells from the monolayer culture grown with RA (10 microM) had less tendency to aggregate than did those from the control culture. Cells from the colonies grown with RA adhered to and spread on a plastic dish for bacterial use, but control cells seldom adhered. These results indicate that RA decreases the cell-cell adhesiveness or suppresses the development of it but increases cell-substratum adhesiveness.  相似文献   

14.
Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin(-) c-kit(+) Sca1(+) primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% +/- 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42. 0% +/- 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 +/- 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 +/- 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP(+) lentivirus vector-transduced colonies revealed vector PCR(+) GFP(+) (42%), vector PCR(-) GFP(-) (46%), and vector PCR(+) GFP(-) (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration.  相似文献   

15.
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA?=?1.2) and vice versa in the summer period (HNA/LNA?=?0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.  相似文献   

16.
Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses.  相似文献   

17.
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.  相似文献   

18.
Nonsense mutation in open reading frame E2 of bovine papillomavirus DNA.   总被引:27,自引:16,他引:11       下载免费PDF全文
Oligonucleotide-directed mutagenesis was used to construct a nonsense mutation in open reading frame (ORF) E2 of bovine papillomavirus DNA. A single base substitution mutation was constructed which converted a TAC codon into a TAG amber stop codon at a position in the ORF that did not overlap with any other viral ORFs. Full-length viral DNA containing the mutation induced only approximately 2% of the transformed foci of mouse C127 cells that were induced by wild-type DNA. In a different transformation assay, approximately one-half of the C127 cells which had acquired the mutant DNA gave rise to colonies containing at least some cells with transformed morphology. The constructed mutation was maintained in cell lines derived from cells which had acquired the mutant viral DNA, but the viral DNA appeared to be integrated into the host cell genome. Genetic mapping experiments proved that the constructed amber mutation caused the decrease in focus-forming activity and the integration of the mutant viral DNA. These results suggest that ORF E2 encodes a protein which is involved either directly or indirectly in some aspects of oncogenic transformation by bovine papillomavirus and in maintaining the viral DNA as a plasmid in transformed cells.  相似文献   

19.
Cytomegalovirus (CMV) is a β-herpesvirus that establishes a lifelong latent or persistent infection. A hallmark of chronic CMV infection is the lifelong persistence of large numbers of virus-specific CD8+ effector/effector memory T cells, a phenomenon called "memory inflation". How the virus continuously stimulates these T cells without being eradicated remains an enigma. The prevailing view is that CMV establishes a low grade "smoldering" infection characterized by tiny bursts of productive infection which are rapidly extinguished, leaving no detectable virus but replenishing the latent pool and leaving the immune system in a highly charged state. However, since abortive reactivation with limited viral gene expression is known to occur commonly, we investigated the necessity for virus reproduction in maintaining the inflationary T cell pool. We inhibited viral replication or spread in vivo using two different mutants of murine CMV (MCMV). First, famcyclovir blocked the replication of MCMV encoding the HSV Thymidine Kinase gene, but had no impact on the CD8+ T cell memory inflation once the infection was established. Second, MCMV that lacks the essential glycoprotein L, and thus is completely unable to spread from cell to cell, also drove memory inflation if the virus was administered systemically. Our data suggest that CMV which cannot spread from the cells it initially infects can repeatedly generate viral antigens to drive memory inflation without suffering eradication of the latent genome pool.  相似文献   

20.
Borna disease virus (BDV) is a non‐segmented negative‐stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell–cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell–cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin‐mediated processing of GP and demonstrate that cleaved and fusion‐active GP is strictly necessary for the cell‐to‐cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus‐glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号