首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 1,4-beta-glucanase CenC from Cellulomonas fimi contains two cellulose-binding domains, CBD(N1) and CBD(N2), arranged in tandem at its N-terminus. These homologous CBDs are distinct in their selectivity for binding amorphous and not crystalline cellulose. Multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the tertiary structure of CBD(N2) in the presence of saturating amounts of cellopentaose. A total of 1996 experimental restraints were used to calculate an ensemble of 21 final structures for the protein. CBD(Nu2) is composed of 11 beta-strands, folded into two antiparallel beta-sheets, with a topology of a jellyroll beta-sandwich. On the basis of patterns of chemical shift perturbations accompanying the addition of cellooligosaccharides, as well as the observation of intermolecular protein-sugar NOE interactions, the cellulose-binding site of CBD(N2) was identified as a cleft that lies across one face of the beta-sandwich. The thermodynamic basis for the binding of cellooligosaccharides was investigated using isothermal titration calorimetry and NMR spectroscopy. Binding is enthalpically driven and consistent with a structural model involving hydrogen bonding between the equatorial hydroxyls of the glucopyranosyl rings and polar amino acid side chains lining the CBD(N2) cleft. Affinity electrophoresis was used to determine that CBD(N2) also binds soluble beta-1,4-linked polymers of glucose, including hydroxyethylcellulose and beta-1,3-1,4-glucans. This study complements a previous analysis of CBD(N1) [Johnson, P. E., Joshi, M. D., Tomme, P., Kilburn, D. G., and McIntosh, L. P. (1996) Biochemistry 35, 14381-14394] and demonstrates that the homologous CBDs from CenC share very similar structures and sugar binding properties.  相似文献   

2.
Endoglucanase C (CenC), a beta1,4 glucanase from the soil bacterium Cellulomonas fimi, binds to amorphous cellulose via two homologous cellulose binding domains, termed CBD(N1) and CBD(N2). In this work, the contributions of 10 amino acids within the binding cleft of CBD(N1) were evaluated by single site-directed mutations to alanine residues. Each isolated domain containing a single mutation was analyzed for binding to an insoluble amorphous preparation of cellulose, phosphoric acid swollen Avicel (PASA), and to a soluble glucopyranoside polymer, barley beta-glucan. The effect of any given mutation on CBD binding was similar for both substrates, suggesting that the mechanism of binding to soluble and insoluble substrates is the same. Tyrosines 19 and 85 were essential for tight binding by CBD(N1) as their replacement by alanine results in affinity decrements of approximately 100-fold on PASA, barley beta-glucan, and soluble cellooligosaccharides. The tertiary structures of unbound Y19A and Y85A were assessed by heteronuclear single quantum coherence (HSQC) spectroscopy. These studies indicated that the structures of both mutants were perturbed but that all perturbations are very near to the site of mutation.  相似文献   

3.
Cellulose-binding domains (CBDs) are discrete protein modules found in a large number of carbohydrolases and a few nonhydrolytic proteins. To date, almost 200 sequences can be classified in 13 different families with distinctly different properties. CBDs vary in size from 4 to 20 kDa and occur at different positions within the polypeptides; N-terminal, C-terminal and internal. They have a moderately high and specific affinity for insoluble or soluble cellulosics with dissociation constants in the low micromolar range. Some CBDs bind irreversibly to cellulose and can be used for applications involving immobilization, others bind reversibly and are more useful for separations and purifications. Dependent on the CBD used, desorption from the matrix can be promoted under various different conditions including denaturants (urea, high pH), water, or specific competitive ligands (e.g. cellobiose). Family I and IV CBDs bind reversibly to cellulose in contrast to family II and III CBDs which are in general, irreversibly bound. The binding of family II CBDs (CBDCex) to crystalline cellulose is characterized by a large favourable increase in entropy indicating that dehydration of the sorbent and the protein are the major driving forces for binding. In contrast, binding of family IV CBDs (CBDN1) to amorphous or soluble cellulosics is driven by a favourable change in enthalpy which is partially offset by an unfavourable entropy change. Hydrogen bond formation and van der Waals interactions are the main driving forces for binding. CBDs with affinity for crystalline cellulose are useful tags for classical column affinity chromatography. The affinity of CBDN1 for soluble cellulosics makes it suitable for use in large-scale aqueous two-phase affinity partitioning systems.  相似文献   

4.
The family IV cellulose-binding domain of Clostridium thermocellum CelK (CBD(CelK)) was expressed in Escherichia coli and purified. It binds to acid-swollen cellulose (ASC) and bacterial microcrystalline cellulose (BMCC) with capacities of 16.03 and 3.95 micromol/g of cellulose and relative affinities (K(r)) of 2.33 and 9.87 liters/g, respectively. The CBD(CelK) is the first representative of family IV CBDs to exhibit an affinity for BMCC. The CBD(CelK) also binds to the soluble polysaccharides lichenin, glucomannan, and barley beta-glucan, which are substrates for CelK. It does not bind to xylan, galactomannan, and carboxymethyl cellulose. The CBD(CelK) contains 1 mol of calcium per mol. The CBD(CelK) has three thiol groups and one disulfide, reduction of which results in total loss of cellulose-binding ability. To reveal amino acid residues important for biological function of the domain and to investigate the role of calcium in the CBD(CelK) four highly conserved aromatic residues (Trp(56), Trp(94), Tyr(111), and Tyr(136)) and Asp(192) were mutated into alanines, giving the mutants W56A, W94A, Y111A, Y136A, and D192A. In addition 14 N-terminal amino acids were deleted, giving the CBD-N(CelK). The CBD-N(CelK) and D192A retained binding parameters close to that of the intact CBD(CelK), W56A and W94A totally lost the ability to bind to cellulose, Y136A bound to both ASC and BMCC but with significantly reduced binding capacity and K(r) and Y111A bound weakly to ASC and did not bind to BMCC. Mutations of the aromatic residues in the CBD(CelK) led to structural changes revealed by studying solubility, circular-dichroism spectra, dimer formation, and aggregation. Calcium content was drastically decreased in D192A. The results suggest that Asp192 is in the calcium-binding site of the CBD(CelK) and that calcium does not affect binding to cellulose. The 14 amino acids from the N terminus of the CBD(CelK) are not important for binding. Tyr136, corresponding to Cellulomonas fimi CenC CBD(N1) Y85, located near the binding cleft, might be involved in the formation of the binding surface, while Y111, W56A, and W94A are essential for the binding process by keeping the CBD(CelK) correctly folded.  相似文献   

5.
The xyn1 encoded 5 domain xylanase from the thermophilic bacterium Rhodothermus marinus binds specifically to xylan, β-glucan and amorphous but not crystalline cellulose. Our results show that the binding is mediated by the full length xylanase, but not by the catalytic domain only. Based on similarities concerning both predicted secondary structure and binding specificity found with one cellulose binding domain of CenC from Cellulomonas fimi, we suggest that the binding is mediated by the two N-terminally repeated domains.  相似文献   

6.
Beta-galactosidase (lacZ) from Escherichia coli is a 464 kDa homotetramer. Each subunit consists of five domains, the third being an alpha/beta barrel that contains most of the active site residues. A comparison is made between each of the domains and a large set of proteins representative of all structures from the protein data bank. Many structures include an alpha/beta barrel. Those that are most similar to the alpha/beta barrel of E. coli beta-galactosidase have similar catalytic residues and belong to the so-called "4/7 superfamily" of glycosyl hydrolases. The structure comparison suggests that beta-amylase should also be included in this family. Of three structure comparison methods tested, the "ProSup" procedure of Zu-Kang and Sippl and the "Superimpose" procedure of Diederichs were slightly superior in discriminating the members of this superfamily, although all procedures were very powerful in identifying related protein structures. Domains 1, 2, and 4 of E. coli beta-galactosidase have topologies related to "jelly-roll barrels" and "immunoglobulin constant" domains. This fold also occurs in the cellulose binding domains (CBDs) of a number of glycosyl hydrolases. The fold of domain 1 of E. coli beta-galactosidase is closely related to some CBDs, and the domain contributes to substrate binding, but in a manner unrelated to cellulose binding by the CBDs. This is typical of domains 1, 2, 4, and 5, which appear to have been recruited to play roles in beta-galactosidase that are unrelated to the functions that such domains provide in other contexts. It is proposed that beta-galactosidase arose from a prototypical single domain alpha/beta barrel with an extended active site cleft. The subsequent incorporation of elements from other domains could then have reduced the size of the active site from a cleft to a pocket to better hydrolyze the disaccharide lactose and, at the same time, to facilitate the production of inducer, allolactose.  相似文献   

7.
Cellulose is a linear homopolymer of beta 1-4 linked glucose residues. Chitin is similar to cellulose in structure, and can be described as cellulose with the hydroxyl group on the C2 carbon replaced by an acetylamine group. Both cellulose and chitin form tightly packed, extensively hydrogen-bonded micro-fibrils. Up to now, binding of cellulase catalytic domains (CDs) to chitin has not been reported. In this article, binding of the CDs of Thermobifida fusca Cel6A, Cel6B, Cel48A, Cel5A, and Cel9A to alpha-chitin was investigated. The CDs of endocellulases, Cel6A and Cel5A did not bind to alpha-chitin; one exocellulase, Cel48A CD bound alpha-chitin moderately well; and the exocellulase Cel6B CD and the processive endocellulase Cel9A CD bound extremely tightly to alpha-chitin. Only mutations of Cel6B W329C, W332A and G234S and Cel9A Y206F, Y206S and D261A/R378K caused weaker binding to alpha-chitin than wild-type, and all these mutations were of residues near the catalytic center. One mutant enzyme, Cel9A D261A/R378K had weak chitinase activity, but no soluble products were detected. Chitotriose and chitotetraose were docked successfully to the catalytic cleft of Cel9A. In general, the positioning of the sugar residues in the model structures matched the cellooligosaccharides in the X-ray structure. Our results show that the binding of chitin by a cellulase can provide additional information about its binding to cellulose.  相似文献   

8.
Cellulases expressed by Cellulomonas fimi consist of a catalytic domain and a discrete non-catalytic cellulose-binding domain (CBD). To establish whether CBDs are common features of plant cell-wall hydroiases from C. fimi, the molecular architecture of xylanase D (XYLD) from this bacterium was investigated. The gene encoding XYLD, designated xynD, consisted of an open reading frame of 1936 bp encoding a protein of Mr 68000. The deduced primary sequence of XYLD was confirmed by the size (64kDa) and N-terminal sequence of the purified recombinant xylanase. Biochemical analysis of the purified enzyme revealed that XYLD is an endo-acting xylanase which displays no detectable activity against polysaccharides other than xylan. The predicted primary structure of XYLD comprised an /V-terminal signal peptide followed by a 190-residue domain that exhibited significant homology to Family-G xylanases. Truncated derivatives of xynD, encoding the W-terminal 193 amino acids of mature XYLD directed the synthesis of a functional xylanase, confirming that the 190-residue N-terminal sequence constitutes the catalytic domain. The remainder of the enzyme consisted of two approximately 90-residue domains, which exhibited extensive homology with each other, and limited sequence identity with CBDs from other polysaccharide hydrolases. Between the two putative CBDs is a 197-amino-acid sequence that exhibits substantial homology with Rhizobium NodB proteins. The four discrete domains in XYLD were separated by either threonine/prolineor novel glycine-rich linker regions. Although full-length XYLD adsorbed to cellulose, truncated derivatives of the enzyme lacking the C-terminal CBD hydrolysed xylan but did not bind to cellulose. Fusion of the C-terminal domain to glutathione-Stransferase generated hybrid proteins that bound to crystalline cellulose, but not to amorphous cellulose or xylan. The location of CBDs in a C. fimi xylanase indicates that domains of this type are not restricted to cellulases, but are widely distributed between hemicellutases also, and therefore play a pivotal role in the activity of the whole repertoire of plant cell-wall hydrolases. The role of the NodB homologue in XYLD is less certain.  相似文献   

9.
The crystal structure of the Clostridium cellulovorans carbohydrate-binding module (CBM) belonging to family 17 has been solved to 1.7 A resolution by multiple anomalous dispersion methods. CBM17 binds to non-crystalline cellulose and soluble beta-1,4-glucans, with a minimal binding requirement of cellotriose and optimal affinity for cellohexaose. The crystal structure of CBM17 complexed with cellotetraose solved at 2.0 A resolution revealed that binding occurs in a cleft on the surface of the molecule involving two tryptophan residues and several charged amino acids. Thermodynamic binding studies and alanine scanning mutagenesis in combination with the cellotetraose complex structure allowed the mapping of the CBM17 binding cleft. In contrast to the binding groove characteristic of family 4 CBMs, family 17 CBMs appear to have a very shallow binding cleft that may be more accessible to cellulose chains in non-crystalline cellulose than the deeper binding clefts of family 4 CBMs. The structural differences in these two modules may reflect non-overlapping binding niches on cellulose surfaces.  相似文献   

10.
The crystal structures of a carbohydrate-binding module (CBM) family 28 domain of endoglucanase Cel5A from Clostridium josui have been determined in ligand-free and complex forms with cellobiose, cellotetraose, and cellopentaose as the first complex structures of this family. In the cleft of a β-sandwich fold, the ligands are recognized by stacking interactions and hydrogen bonds. Conformations of the bound cellooligosaccharides are similar to those in crystals and solution but clearly different from the cellulose structure. Interestingly, the glucan chain bound on CBM28 is in the opposite direction of that bound to CBM17, although these families share significant structural similarity.  相似文献   

11.
The microbial degradation of the plant cell wall is an important biological process, representing a major component of the carbon cycle. Enzymes that mediate the hydrolysis of this composite structure are modular proteins that contain non-catalytic carbohydrate binding modules (CBMs) that enhance catalytic activity. CBMs are grouped into sequence-based families, and in a previous study we showed that a family 6 CBM (CBM6) that interacts with xylan contains two potential ligand binding clefts, designated cleft A and cleft B. Mutagenesis and NMR studies showed that only cleft A in this protein binds to xylan. Family 6 CBMs bind to a range of polysaccharides, and it was proposed that the variation in ligand specificity observed in these proteins reflects the specific cleft that interacts with the target carbohydrate. Here the biochemical properties of the C-terminal cellulose binding CBM6 (CmCBM6-2) from Cellvibrio mixtus endoglucanase 5A were investigated. The CBM binds to the beta1,4-beta1,3-mixed linked glucans lichenan and barley beta-glucan, cello-oligosaccharides, insoluble forms of cellulose, the beta1,3-glucan laminarin, and xylooligosaccharides. Mutagenesis studies, informed by the crystal structure of the protein (presented in the accompanying paper, Pires, V. M. R., Henshaw, J. L., Prates, J. A. M., Bolam, D., Ferreira, L. M. A. Fontes, C. M. G. A., Henrissat, B., Planas, A., Gilbert, H. J., Czjzek, M. (2004) J. Biol. Chem. 279, 21560-21568), show that both cleft A and B can accommodate cello-oligosaccharides and laminarin displays a preference for cleft A, whereas xylooligosaccharides exhibit absolute specificity for this site, and the beta1,4,-beta1,3-mixed linked glucans interact only with cleft B. The binding of CmCBM6-2 to insoluble cellulose involves synergistic interactions between cleft A and cleft B. These data show that CmCBM6-2 contains two binding sites that display differences in ligand specificity, supporting the view that distinct binding clefts with different specificities can contribute to the variation in ligand recognition displayed by family 6 CBMs. This is in sharp contrast to other CBM families, where variation in ligand binding is a result of changes in the topology of a single carbohydrate-binding site.  相似文献   

12.
大多数纤维素酶含有催化区和可与纤维素结合且氨基酸序列较为保守的纤维素吸附区(cellulosebindingdomain,CBD)。纤维素吸附区促进酶与底物的结合,有利于催化区对不溶性底物的作用,但对可溶性底物的催化作用无影响。对CBD结构的研究和进一步的诱变研究揭示:纤维素吸附区是通过几个芳香族氨基酸结合到纤维素表面。有实验证明外切葡聚糖酶的CBD对结晶纤维素有疏解作用。CBD结构域已成功地应用于一系列重组融合蛋白的纯化和固定化。对纤维素吸附区结构与功能的深入了解对进一步了解酶的作用机制,促进纤维素酶类生物技术的发展是重要的 。  相似文献   

13.
The C-terminal family 9 carbohydrate-binding module of xylanase 10A from Thermotoga maritima (CBM9-2) binds to amorphous cellulose, crystalline cellulose, and the insoluble fraction of oat spelt xylan. The association constants (K(a)) for adsorption to insoluble polysaccharides are 1 x 10(5) to 3 x 10(5) M(-1). Of the soluble polysaccharides tested, CBM9-2 binds to barley beta-glucan, xyloglucan, and xylan. CBM9-2 binds specifically to the reducing ends of cellulose and soluble polysaccharides, a property that is currently unique to this CBM. CBM9-2 also binds glucose, xylose, galactose, arabinose, cellooligosaccharides, xylooligosaccharides, maltose, and lactose, with affinities ranging from 10(3) M(-1) for monosaccharides to 10(6) M(-1) for disaccharides and oligosaccharides. Cellooligosaccharides longer than two glucose units do not bind with improved affinity, indicating that cellobiose is sufficient to occupy the entire binding site. In general, the binding reaction is dominated by favorable changes in enthalpy, which are partially compensated by unfavorable entropy changes.  相似文献   

14.
The planar and anchoring residues of the family IIIa cellulose binding domain (CBD) from the cellulosomal scaffolding protein of Clostridium cellulovorans were investigated by site-directed mutagenesis and cellulose binding studies. By fusion with maltose binding protein, the family IIIa recombinant wild-type and mutant CBDs from C. cellulovorans were expressed as soluble forms. Cellulose binding tests of the mutant CBDs indicated that the planar strip residues played a major role in cellulose binding and that the anchoring residues played only a minor role.  相似文献   

15.
Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of DeltaR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. DeltaR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of approximately 100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for DeltaR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH2-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation.  相似文献   

16.
The cellulose binding elicitor lectin (CBEL) from Phytophthora parasitica nicotianae contains two cellulose binding domains (CBDs) belonging to the Carbohydrate Binding Module1 family, which is found almost exclusively in fungi. The mechanism by which CBEL is perceived by the host plant remains unknown. The role of CBDs in eliciting activity was investigated using modified versions of the protein produced in Escherichia coli or synthesized in planta through the potato virus X expression system. Recombinant CBEL produced by E. coli elicited necrotic lesions and defense gene expression when injected into tobacco (Nicotiana tabacum) leaves. CBEL production in planta induced necrosis. Site-directed mutagenesis on aromatic amino acid residues located within the CBDs as well as leaf infiltration assays using mutated and truncated recombinant proteins confirmed the importance of intact CBDs to induce defense responses. Tobacco and Arabidopsis thaliana leaf infiltration assays using synthetic peptides showed that the CBDs of CBEL are essential and sufficient to stimulate defense responses. Moreover, CBEL elicits a transient variation of cytosolic calcium levels in tobacco cells but not in protoplasts. These results define CBDs as a novel class of molecular patterns in oomycetes that are targeted by the innate immune system of plants and might act through interaction with the cell wall.  相似文献   

17.
Protein clefts in molecular recognition and function.   总被引:14,自引:1,他引:13       下载免费PDF全文
One of the primary factors determining how proteins interact with other molecules is the size of clefts in the protein's surface. In enzymes, for example, the active site is often characterized by a particularly large and deep cleft, while interactions between the molecules of a protein dimer tend to involve approximately planar surfaces. Here we present an analysis of how cleft volumes in proteins relate to their molecular interactions and functions. Three separate datasets are used, representing enzyme-ligand binding, protein-protein dimerization and antibody-antigen complexes. We find that, in single-chain enzymes, the ligand is bound in the largest cleft in over 83% of the proteins. Usually the largest cleft is considerably larger than the others, suggesting that size is a functional requirement. Thus, in many cases, the likely active sites of an enzyme can be identified using purely geometrical criteria alone. In other cases, where there is no predominantly large cleft, chemical interactions are required for pinpointing the correct location. In antibody-antigen interactions the antibody usually presents a large cleft for antigen binding. In contrast, protein-protein interactions in homodimers are characterized by approximately planar interfaces with several clefts involved. However, the largest cleft in each subunit still tends to be involved.  相似文献   

18.
Described is a new, greener approach to increasing adhesion between wet cellulose surfaces. Polyvinylamine (PVAm) with grafted TEMPO spontaneously adsorbs onto cellulose and oxidizes the C6 hydroxyl to aldehyde groups that react to form covalent bonds with primary amines on PVAm. Grafted TEMPO offers two important advantages over solutions of low-molecular-weight water-soluble TEMPO derivatives. First, the oxidation of porous cellulose wood fibers is restricted to the exterior surfaces accessible to high-molecular-weight PVAm. Thus, fibers are not weakened by excessive oxidation of the interior fiber wall surfaces. The second advantage of tethered TEMPO is that the total dose of TEMPO required to oxidize dilute fiber suspensions is much less than that required by water-soluble TEMPO derivatives. PVAm-TEMPO is stable under oxidizing conditions. The oxidation activity of the immobilized TEMPO was demonstrated by the conversion of methylglyoxal to pyruvic acid.  相似文献   

19.
Monoclonal antibodies (MAbs) specific for cellobiohydrolase I (CBH I) and endoglucanase I (EG I) were conjugated to 10- and 15-nm colloidal gold particles, respectively. The binding of CBH I and EG I was visualized by utilizing the MAb-colloidal gold probes. The visualization procedure involved immobilization of cellulose microfibrils on copper electron microscopy grids, incubation of the cellulose-coated grids with cellulase(s), binding of MAb-colloidal gold conjugates to cellulase(s), and visualization via transmission electron microscopy. CBH I was seen bound to apparent crystalline cellulose as well as apparent amorphous cellulose. EG I was seen bound extensively to apparent amorphous cellulose with minimal binding to crystalline cellulose.  相似文献   

20.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号