首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Mutants carrying recF143 or recF144 show wild type levels of host cell reactivation of UV-irradiated vir and wild type rates of excision gap closure in repairing UV damage to their own DNA. The same mutants showed reduced rates of postreplication repair strand joining. When uvrA - recF- or uvrB - recF- strains are tested, postreplication repair strand joining is incomplete or does not occur at fluences above 1 J/m2. We suggest that there may be a UvrAB and a RecF pathway of postreplication repair or that the repair functions controlled or determined by uvrA uvrB and by recF may be similar. An intermediate in postreplication repair may accumulate in the uvr - recF- strain.  相似文献   

3.
Summary Strains with both uvrA6 and the lex-1 mutations are more sensitive to ultraviolet light (UV) than isogenic strains with only one of the mutations. The lex - uvrA-double mutant has the same sensitivity to methyl-methane-sulfonate as the lex - uvrA+single mutant. UV-irradiated cultures of lex - uvrA+and lex - uvrA-strains do not produce more streptomycinresistant mutants per survivor than unirradiated cultures. UV-irradiated cultures of a lex + uvrA-strain produce large yields of mutants at both low (4 ergs/mm2) and high (25 ergs/mm2) doses of UV compared with the lex + uvrA+ strain which produce an intermediate yield of mutants at 25 ergs/mm2, and a small yield at 4 ergs/mm2, not significantly greater than unirradiated cultures. A dose of UV which does not induce mutations in strains with the lex-1 mutation produces only a small decrease in DNA synthesis in the lex - uvrA+strain. The results are interpreted to mean that the lex-1 mutation probably does not affect the same pathway of DNA repair as the uvrA +product (i.e. excision of thymine dimers), and that the absence of UV-induced mutations in irradiated cultures of lex -strains is probably not due to a cessation of DNA replication.  相似文献   

4.
Xenopus laevis oocytes are a powerful tool for the characterization of signal transduction pathways leading to the induction of DNA synthesis. Since activation of PLA2, PLC, or PLD has been postulated as a mediator of ras function, we have used the oocyte system to study the putative functional relationship between ras-p21 and these phospholipases. A rapid generation of PA and DAG was observed after ras-p21 microinjection, suggesting the activation of both PLC and PLD enzymes. However, production of DAG was sensitive to inhibition of the PA-hydrolase by propranolol, indicating that PLD is the enzyme responsible for the generation of both PA and DAG. Microinjection of PLD or ras-p21 induced the late production of lysophosphatidylcholine on a p42MAPK-dependent manner, an indication of the activation of a PLA2. Inhibition of this enzyme by quinacrine does not inhibit PLD- or ras-induced GVBD, suggesting that PLA2 activation is not needed for ras or PLD function. Contrary to 3T3 fibroblasts, where ras-p21 is functionally dependent for its mitogenic activity on TPA- and staurosporine-sensitive PKC isoforms, in Xenopus oocytes, induction of GVBD by ras-p21 was independent of PKC, while PLC-induced GVBD was sensitive to PKC inhibition. Thus, our results demonstrate the activation of PLD and PLA2 by ras-p21 proteins, while no effect on PLC was observed.  相似文献   

5.
The ras genes from yeast and mammalian cells were fused to plant expression promoters, and introduced into plant cells via Agrobacterium, to study their effect on cell growth and development. All introduced ras genes had a strong inhibitory effect on callus and shoot regeneration from plant tissues. This is consistent with earlier findings that heterologous ras genes were highly lethal to protoplasts following direct DNA uptake. These effects could not be reversed by increasing exogenous or endogenous cytokinin levels. These effects were also independent of the v-Ha-ras mutations in functionally important regions of Ras proteins such as effector-binding and membrane-binding sites. Similarly, co-transformation with the genes encoding the Ras-negative regulators, GTPase-activating protein and neurofibromin did not affect the ras inhibitory effect, indicating that the mechanism of ras inhibition of plant cells is not related to normal ras cellular functions. This conclusion was supported by further studies in which ras gene expression was modified using various promoters and antisense constructs. The introduced ras sequences remained fully inhibitory regardless of which promoters (inducible or tissue-specific) or which orientations (sense or antisense) were tested. This strongly suggests that the ras DNA sequence itself, rather than the Ras protein or ras mRNA, is directly involved in the inhibitory effect. The mechanism underlying this novel phenomenon remains unknown. Introduced ras genes may inhibit plant cell growth by inducing co-suppression of unknown endogenous ras or ras-related genes, thereby leading to the arrest of cell growth.  相似文献   

6.
Although the role of several protooncogenes, including sis, myc, and myb in the regulation of growth and differentiation of vascular cells has been examined in some detail, limited information is available on the contribution of ras genes to these processes. In the present studies the influence of oncogenic ras transfection on the phenotypic expression of rat aortic smooth muscle cells (SMCs) was examined. Cultured rat aortic SMCs during early passage (P4) were transfected by lipofection with c-Ha-rasEJ in a pSV2 neo vector or with pSV2 neo vector alone. Stable transfectants were selected in G418 over a 6-week period. Oncogene-transfected cells (ras-LF-1) exhibited differences in morphology and growth pattern relative to vector controls (neo-LF-1), or naive SMCs, including the development of prominent processes and the appearance of focal cellular arrangements giving rise to latticelike structures. Southern analysis revealed multiple integration of oncogenic ras in ras LF-1 cells. Transfection of c-Ha-rasEJ was associated with a twofold increase in p21 levels relative to pSV2 vector controls demonstrating that exogenous ras was expressed in these cells. Overexpression of ras p21 afforded SMCs a lower serum requirement for growth compared to vector controls, anchor-age independent growth on soft agar, and acquisition of epidermal growth factor (EGF) responsiveness. Stimulation of serum-deprived SMCs with 5% fetal bovine serum (FBS) increased steady-state levels of c-Ha-ras mRNA in both ras-LF-1 and neo-LF-1 but ras induction was more pronounced in ras-transfected cells. α-smooth muscle (SM) actin gene expression was markedly reduced in ras-transfected cells relative to vector controls. These results show that transfection of c-Ha-rasEJ into aortic SMCs induces an altered phenotypic state characterized by alterations in growth factor-related signal transduction and tumorigenic potential. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Conserved amino-acids of H-ras from residues 25 to 34 were mutated in human H-ras cDNA with a pre-existing valine-12 activating mutation ([V12]p21), and built into SV40-driven expression vectors. The influence of the introduced mutations was initially screened by transfection of Rat-1 cells to score foci of transformed cells. Nonconservative mutations of amino-acids 25 (tryptophan for glutamine), 27 (asparagine for histidine) and 34 (alanine for proline) did not abrogate the transforming potential of [V12]p21. The conservative mutation of phenylalanine-28 to tryptophan ([V12W28]p21) was also still transforming. Significantly, in the absence of the valine-12 activating mutation, tryptophan-28-ras ([W28]p21) was weakly transforming while, in contrast, [V12D28]p21 was unable to transform Rat-1 cells and retarded cell growth. Analysis of the binding and dissociation of GTP and GDP to normal and mutated p21 expressed in Escherichia coli showed that [V12D28]p21 and [D28]p21 do not bind GTP. The dissociation rate of both GTP and GDP bound to [W28]p21 is increased, suggesting a mechanism for its transforming potential in Rat-1 cells. These studies illustrate the importance of phenylalanine-28 in guanine nucleotide binding by p21 h-ras . The mutations described could be valuable tools in investigations of cellular signal transduction involving small GTP-binding proteins.  相似文献   

8.
The ability of aras protein to associate with proteins present in rat brain cytosolin vitro was investigated using chemical cross-linking agents and the125I-labelled v-H-ras protein. Two iodinated protein complexes with apparent molecular weights of 40 and 85 kDa were observed when a mixture of rat brain cytosol and [125I]ras was treated with the cross-linking agent disuccinimidyl suberate and subjected to SDS-PAGE. Formation of the [125I] 85 kDa complex was enhanced by a high concentration of EDTA while generation of the 40 kDa species was abolished by this treatment. Formation of the [125I] 85 kDa complex was inhibited by unlabelledras protein, GTP, GTPS, and GDP but not by ATPS and GMP.Chromatography of the cross-linked brain cytosol-[125I]ras mixture on DEAE cellulose partially resolved the [125I] 85 kDa complex from the [125I]ras protein. The [125I] 85 kDa complex (formed using ethyleneglycolbis (succinimidylsuccinate) as the cross-linking agent) could be immunoprecipitated using a rabbit anti-ras polyclonal antibody. Treatment of the immunoprecipitate with hydroxylamine to cleave the cross-link yielded [125I]-labelledras. A substantial enrichment of the proportion of the [125I] 85 kDa complex in the cross-linked extract was achieved by preparative SDS-PAGE. It is concluded that thein vitro chemical cross-linking approach employed here has detected tworas binding proteins in rat brain cytosol: a 65 kDa heat-sensitive and a 20 kDa heat-stable protein. The possibility that the 65 kDaras binding protein is aras regulatory orras effector protein which has not so far been characterised is briefly discussed.Abbreviations DSS disuccinimidyl suberate - EGS ethyleneglycolbis (succinimidylsuccinate) - GTPS guanosine 5-[-thio] triphosphate - ATPS adenosine 5-[-thio] triphosphate  相似文献   

9.
Human Xeroderma pigmentosum “normal” fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental “normal” AS16 cells and a revertant clone (ASKXA Cl 1.1 G). Our results lead to the conclusion that the XP fibroblasts are phenotipically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.  相似文献   

10.
It was shown that mouse embryo fibroblasts and human foreskin diploid fibroblasts of AGO 1523 line cultivated on specially prepared substrates with narrow (15 ± 3 m) linear adhesive strips were elongated and oriented along the strips, but the mean lengths of the fibroblasts of each type on the strips differed from those on the standard culture substrates. In contrast to the normal fibroblasts, the length of mouse embryonic fibroblasts with inactivated gene-suppressor Rb responsible for negative control of cell proliferation (MEF Rb-/-), ras-transformed mouse embryonic fibroblasts (MEF Rb-/-ras), or normal rat epitheliocytes of IAR2 line significantly exceeded those of the same cells on the standard culture substrates. The results of experiments with the drugs specifically affecting the cytoskeleton (colcemid and cytochalasin D) suggest that the constant mean length of normal fibroblasts is controlled by a dynamic equilibrium between two forces: centripetal tension of contractile actin-myosin microfilaments and centrifugal force generated by growing microtubules. This cytoskeletal mechanism is disturbed in MEF Rb-/- or MEF Rb-/-ras, probably, because of an impaired actin cytoskeleton and also in IAR2 epitheliocytes due to the different organization of the actin-myosin system in these cells, as compared to that in the fibroblasts.  相似文献   

11.
Colorectal cancer (CRC) is the third most common cancer worldwide. Colorectal cancer incidence differs widely among different geographic regions. In addition to mutational changes, epigenetic mechanisms also play important roles in the pathogenesis of CRCs. O6-methylguanine-DNA methyltransferase (O 6 -MGMT) is a DNA repair protein and in the absence of MGMT activity, G-to-A transition may accumulate in the specific genes such as K-ras and p53. To identify which CpG sites are critical for its downregulation, we analyzed the methylation status of the MGMT gene promoter in two sites in CRC patients. Then we compared the frequency of their methylation changes with the results of our previously reported K-ras gene mutation, APC2 and p16 methylation. MGMT methylation was examined in 92 tumor samples. A methylation specific PCR (MSP) method was performed for two loci of MGMT gene which described as MGMT-A and MGMT-B. The prevalence of MGMT-A, and MGMT-B methylation was 49/91 (53.8 %), and 83/92 (90.2 %), respectively. We detected high frequency of MGMT-B but not MGMT-A methylation in tumor tissues with APC2 methylation. Our results showed that MGMT-B methylation is significantly associated with K-ras gene mutation rather than MGMT-A (p = 0.04). Simultaneously, an inverse correlation was found between p16 and MGMT-B methylation simultaneously (p = 0.02). Our study indicated that hypermethylation of the specific locus near the MGMT start codon is critical for cancer progression. MGMT-B assessment that is associated with K-ras mutation can have a prognostic value in patients with CRC.  相似文献   

12.
13.

Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis in pancreatic cancer cells. Wild type K-ras BxPC-3 and HOM: GGT(Gly) → TGT(Cys) K12 transformed MIA PaCa-2 adenocarcinoma cells were cultured in the presence of [1,2-13C2]-d-glucose as the single tracer for 24 h and treated with either 100 μM metformin (MET), 1 mM cholesteryl hemisuccinate (CHS), or the dose matching combination of MET and CHS (CHS–MET). Wild type K-ras cells used 11.43 % (SD = ±0.32) of new acetyl-CoA for palmitate synthesis that was derived from glucose, while K-ras mutated MIA PaCa-2 cells shuttled less than half as much, 5.47 % [SD = ±0.28 (P < 0.01)] of this precursor towards FAS. Cholesterol treatment almost doubled glucose-derived acetyl-CoA enrichment to 9.54 % (SD = ±0.24) and elevated the fraction of new palmitate synthesis by over 2.5-fold in MIA PaCa-2 cells; whereby 100 μM MET treatment resulted in a 28 % inhibitory effect on FAS. Therefore, acetyl-CoA shuttling towards its carboxylase, from thiolase, produces contextual synthetic inhibition by metformin of new palmitate production. Thereby, metformin, mutated K-ras and high cholesterol each contributes to limit new fatty acid and potentially cell membrane synthesis, demonstrating a previously unknown mechanism for inhibiting cancer growth during the metabolic syndrome.

  相似文献   

14.
A series of in vivo and in vitro experiments were conducted to determine the effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) administered on the expression of c-ras. Differences in c-ras expression between control and TCDD treated groups were determined by immunoassay of p21ras protein, or indirectly measured by the specific binding of 3H-GTP to hepatic plasma membrane preparations. Intraperitoneal injection of sublethal doses of TCDD significantly elevated (P < 0.05, Student t test) levels of hepatic p21ras protein in Sprague-Dawley rats and TCDD sensitive C57BL/6J mice. Such an increase occurred at an early stage of poisoning in the C57BL/6J mice. The earliest increase was detectable 6 hr after dosing, and the differencebecame statistically significant by 12 and 24 hr after dosing. In contrast, TCDD tolerant DBA/2J mice had only a marginal increase in hepatic p21ras protein which did not become statistically significant even at 24 hr post-dosing. TCDD evoked increases in hepatic p21ras protein of C57BL/6J mice were accompanied by the increase in the specific binding of GTP to hepatic plasma membranes. Column chromatography of solubilized rat hepatic membrane proteins on sephadex G-50 showed TCDD administration increased levels of a 3H-GTP binding protein with MW of approximately 21 Kd. 3H-GTP binding in total hepatic membranes was also elevated (P<0.05, Fisher PLSD multiple comparison test) 6 hr and 24 hr after dosing of C57BL/6J mice, but as expected the effect of TCDD was not as conspicuous as that found in the plasma membrane. TCDD treatment increased levels of a 21 Kd protein found in the in vitro translation products of RNA purified from guinea pig liver. This protein was identified as a c-ras protein based upon its ability to bind GTP, precipitation by a polyclonal antibody against the rasHa and Ki proteins and subsequent SDS-PAGE which showed a single protein band of ≈ 21 Kd.  相似文献   

15.
Summary Kinetic analysis of induction of recA protein synthesis after U.V. irradiation does not show correspondence with the kinetics of division inhibition in lon + and lon - strains, but there is correlation between induction and DNA repair activity. Protein X is stable and identical in both lon + and lon - strains. When the induction of recA protein after U.V. is drastically reduced by rifampicin treatment, no effect on the kinetics of division inhibition is observed.  相似文献   

16.
Several methods for the iodination of recombinant v-H-ras protein were compared. The Iodobead method gave greates incorporation of radioactivity with minimal modification of theras protein. Upon treatment of theras protein with [125I] Nal and an Iodobead, radioactivity was initially incorporated into a 22 kDa species with a pl of 5.2, then predominantly into a 23 kDa species with a pl of 5.4. The specific activity of [125I]ras was 6×106 cpm/pmol totalras protein. Iondination did not alter the biological activity of theras protein as judged by its ability to bind GTPS and induced maturation ofXenopus laevis oocytes. It is concluded that while iodination alters the apparent molecular weight and pI ofras, presumably by the oxidation of one or more classes of amino acids, this does not affect the biological function of the protein. Theras protein, radioactively-labelled with iodine using the Iodobead method, should be suitable for studies of protein-protein interactions involvingras. Treatment of iodinatedras with the chemical cross-linking agent disuccinimidyl suberate revealed the presence of several minor high molecular weight protein species. This result shows that, in a dilute solution of purifiedras protein, the monomeric form is in equilibrium with small amounts of polymeric forms.Abbreviations DSS Disuccinimidyl Suberate - GTPS Guanosine 5-[-thio] triphosphate - ATPS Adenosine 5[-thio] Triphosphate  相似文献   

17.
18.
Summary Weigle reactivation and mutagenesis have been found to be defective in strains of E. coli deficient in single-strand DNA binding protein (SSB). These defects parallel those previously found in prophage induction and amplification of recA protein synthesis in ssb strains. Together, these results demonstrate a role for SSB in the induction of SOS responses. UV survival studies of ssb - recA- and ssb - uvr- strains are presented which also suggest a role for SSB in recombinational repair processes but not in excision repair. Studies of host cell reactivation support this latter conclusion.  相似文献   

19.
Recombinant histidine-tagged v-Ha-ras (his-ras) was purified to homogeneity from extracts ofE. coli M15 using a one-step procedure which involved immobilised metal ion chromatography on Ni2+-nitriloacetic acid agarose (Ni-NTA). The optimal pH for elution by imidazole was 6.6 and the yield of his-ras protein (greater than 95% pure) was about 4 mg/litreE. coli culture. Chromatography of a mixture of purified his-ras and rat brain cytosol on Ni-NTA together with SDS-PAGE and silver staining of proteins were employed to search forras-binding proteins present in rat brain cytosol. Chromatography of rat brain cytosol alone on Ni-NTA revealed several protein species which were not readily eluted with imidazole. These are likely to be low-abundance brain metal ion binding proteins. Pre-treatment of rat brain cytosol with Ni-NTA before a second round of chromatography on Ni-NTA removed most of these proteins. Chromatography of a mixture of pre-treated rat brain cytosol and purified his-ras protein revealed four new protein bands with molecular weights of 250, 90, 80 and 70 kDa. These were considered to be candidateras-binding proteins. It is concluded that the use of his-ras and immobilised metal ion chromatography does provide an approach which can be used to identifyras binding proteins present in cellular extracts.Abbreviations his-ras histidine-tagged vHa-ras - Ni-NTA Ni2+ nitriloacetic acid agarose - IPTG isopropyl thio--D-galactoside  相似文献   

20.
We have examined the expression of the transformed phenotype in a series of clonal lines of NIH/3T3 cells transfected with the human c-Ha-rasVal 12 oncogene and the neomycin phosphotransferase gene. Cells from individual transformed foci were cloned and subjected to detailed analyses of the ras sequences. Three clones were found that expressed approximately one, 2–4, or 4–8 copies of the human c-ras oncogene, respectively. A fourth clone had multiple copies of the transfected sequences, and expressed abundant c-Ha-ras RNA. Analysis of the tranformed phenotype of various clones indicated that cells expressing low levels of mutant c-Ha-ras had lost some of their extracellular fibronectin network, and were barely altered in their cytoskeleton. In contrast, cells expressing abundant c-Ha-ras had lost both their actin and fibronectin networks and showed an increase in plasminogen activator activity. Cells with amplified c-Ha-rasVal 12 grew better in low serum, formed large colonies in soft agar and showed enhanced activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis. These results show that the dosage level of the mutant oncogene makes a significant contribution to the transformed phenotype of c-Ha-ras oncogene-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号