首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 77 毫秒
1.
本实验用小鼠血液淋巴细胞为核供体进行了核移植研究。用淋巴细胞分离液(比重1.088)分离出小鼠血液中的淋巴细胞,直接用作核移植供体细胞,采用胞质内注射法成功构建的重构胚经常规培养2h后,SrCl2激活处理6h,然后添加mM16培养液和小鼠输卵管上皮细胞饲养层共培养。把发育至早期囊胚阶段的重构胚转移至小鼠胎儿成纤维细胞饲养层上,添加ES细胞培养液继续培养。对孵化出的内细胞团进行消化,然后接种培养。结果显示,小鼠血液淋巴细胞可以支持体细胞核移植重构胚的发育,核移植重构胚2-细胞率41.03%(128/312),桑葚胚和囊胚发育率分别为9.29%(29/312),1.92%(6/312)。重构囊胚在小鼠胎儿成纤维细胞饲养层上分离出2个内细胞团,分离率为0.64%(2/312)。实验证实利用小鼠血液淋巴细胞进行体细胞核移植是可行的,可用于深入研究。  相似文献   

2.
取8周后的雌性昆明小鼠进行超排,取卵母细胞用作核受体,收集卵母细胞周围的卵丘细胞作核供体,进行体细胞核移植。核移植重构胚经SrCl2激活处理6h后,与改良的M16培养液和小鼠输卵管上皮细胞共培养;将发育到早期囊胚阶段的重构胚转移至小鼠胎儿成纤维细胞饲养层上,添加含心肌细胞培养液的ES细胞培养液;把孵出的ICM进行消化接种培养,对孵出的ES细胞集落进行鉴定培养。结果显示,以小鼠卵丘细胞为核供体,体细胞核移植重构胚激活率为65.23%,囊胚发育率为11.69%;9个核移植重构囊胚中分离出ES细胞集落,分离率为2.77%;分离出的核移植ES细胞集落具有岛屿状团状隆起结构、碱性磷酸酶染色呈阳性,体外分化可形成类胚体,并能分化成上皮样或梭形细胞。ES细胞集落经常规冻存和复苏后,显示出同冻存前相似的集落形态,并具有较强的增殖能力。实验证实小鼠输卵管上皮细胞、改良的M16培养液及含心肌细胞培养液的ES细胞培养液可以更为成功地运用于小鼠的体细胞核移植及ES细胞的分离培养研究。  相似文献   

3.
体细胞来源及培养代数对核移植重构胚发育的影响   总被引:2,自引:0,他引:2  
为探讨体细胞来源及培养代数对核移植重构胚发育的影响,实验采用电融合法将小鼠2—细胞胚胎卵裂球、胚胎干细胞(ES)、胎儿成纤维细胞、耳成纤维细胞、尾尖成纤维细胞、睾丸支持细胞和精原细胞以及不同培养代次的胎儿成纤维细胞进行了核移植。结果显示:2—细胞胚胎卵裂球供核重构胚发育最好,囊胚率为7.4%;ES细胞重构胚虽然发育率低,但仍有囊胚出现,比例为0.7%;胎儿成纤维细胞重构胚最高发育阶段为桑椹胚,比例为0.2%;精原细胞重构胚只能发育到8-细胞阶段,比例为0.3%;其他几类细胞重构胚则仅能发育至4-细胞阶段。不同培养代数的胎儿成纤维细胞重构胚除第3代外都可发育到8-细胞阶段,且发育率差异不显著,但第一代细胞重构胚2-细胞发育率(40.7%)显著低于2、3和4代细胞重构胚。结果表明:不同分化程度的细胞核移植后,重新编程的难易程度是不一样的,分化程度越高则重新编程越难;未调整细胞周期的ES细胞由于多数处于S期,所以重构胚发育率很低;体外培养传代有利于体细胞核移植后重新编程。  相似文献   

4.
研究去核山羊(Capra hircus)体内成熟的M II期卵母细胞与异种成年的哺乳动物(包括山羊、波尔山羊、牛、塔尔羊、熊猫)及人的成纤维细胞融合形成的体细胞核移植胚胎着床前的发育能力。结果显示这些异种体细胞核移植重构胚可以完成着床前发育, 并形成囊胚。种内体细胞核移植胚的融合率和囊胚发育率分别为78.67%(557/708)和56.29%(264/469); 亚种间或种间体细胞核移植胚的融合率和囊胚发育率分别为: 波尔山羊78.18%(541/692)、33.90%(40/118), 牛70.53%(146/207)、22.52%(25/111), 塔尔羊53.51%(61/114)、5.26%(3/570), 熊猫79.82%(1159/1452)、8.35%(75/898), 人68.76%(317/461)、5.41%(16/296)。由此结果得出以下结论: (1)山羊M II期卵母细胞胞质与供核细胞之间的亲缘性不影响两者的融合率; (2)山羊M II期卵母细胞的胞质能支持异种间体细胞核移植胚的着床前发育; (3)亲缘关系近的种间核移植胚的囊胚发育率高于亲缘关系远的种间核移植胚的。  相似文献   

5.
研究去核山羊(Capra hircus)体内成熟的M II期卵母细胞与异种成年的哺乳动物(包括山羊、波尔山羊、牛、塔尔羊、熊猫)及人的成纤维细胞融合形成的体细胞核移植胚胎着床前的发育能力。结果显示这些异种体细胞核移植重构胚可以完成着床前发育, 并形成囊胚。种内体细胞核移植胚的融合率和囊胚发育率分别为78.67%(557/708)和56.29%(264/469); 亚种间或种间体细胞核移植胚的融合率和囊胚发育率分别为: 波尔山羊78.18%(541/692)、33.90%(40/118), 牛70.53%(146/207)、22.52%(25/111), 塔尔羊53.51%(61/114)、5.26%(3/570), 熊猫79.82%(1159/1452)、8.35%(75/898), 人68.76%(317/461)、5.41%(16/296)。由此结果得出以下结论: (1)山羊M II期卵母细胞胞质与供核细胞之间的亲缘性不影响两者的融合率; (2)山羊M II期卵母细胞的胞质能支持异种间体细胞核移植胚的着床前发育; (3)亲缘关系近的种间核移植胚的囊胚发育率高于亲缘关系远的种间核移植胚的。  相似文献   

6.
为了证实慢病毒对细胞具有遗传修饰和重编程作用,在本实验中使用慢病毒感染猪胎儿成纤维细胞.结果显示:慢病毒介导的EGFP在猪胎儿成纤维细胞中稳定和高效表达,使用添加LIF和bFGF的细胞培养液,部分猪的胎儿成纤维细胞逐渐改变原有的纤维状形态,形成圆形的细胞,细胞逐步增殖形成细胞集落,细胞集落边界清晰,在饲养层上细胞集落生长迅速,具有稳定的生长性能和正常核型,细胞碱性磷酸酶染色为阳性,表达干细胞特有的标记Oct4、Nanog和SSEA1,在体外能够形成拟胚体,在体内分化形成包含三个生殖层的畸胎瘤.作为核移植的供体细胞,克隆胚的卵裂率为53.33%、桑椹胚率为9.03%、囊胚率为2.07%、孵化囊胚的总细胞数为26.5,在桑椹胚率和囊胚率方面显著低于猪普通胎儿成纤维细胞核移植克隆胚的发育能力(P<0.05).结果证实慢病毒能够直接使猪的胎儿成纤维细胞转变成iPS细胞,因此慢病毒将成为一种理想的材料和工具用于细胞的遗传修饰和细胞重构等方面的研究.  相似文献   

7.
共培养体系在牛核移植胚体外发育培养中的应用   总被引:3,自引:0,他引:3  
采用电融合法构建牛体细胞核移植重构胚,分析共培养细胞类型、传代次数、细胞冻-融以及蛋白质添加物(BFF和FBS)对牛体细胞核移植胚体外发育的影响,探讨胚胎体外共培养的条件,以建立优化的共培养体系。结果表明与非共培养组相比,共培养组重构胚的囊胚发育率以及胚胎细胞数显著增加(P<0.05),而输卵管上皮细胞共培养组同颗粒细胞共培养组相比胚胎细胞数显著增加(P<0.05),更适合做共培养细胞;随着共培养细胞传代次数的增加重构胚囊胚发育率及胚胎细胞数显著下降(P<0.05),共培养细胞在冷冻处理后重构胚的囊胚率和胚胎细胞数都显著下降(P<0.05);BFF较FBS更能促进牛核移植胚的囊胚发育率(P<0.05)。表明应用新鲜原代输卵管上皮细胞进行牛核移植胚胎的共培养,并在SOFaa添加10?F能够有效促进核移植胚胎的体外发育。  相似文献   

8.
不同供体细胞及其处理对猪核移植重构胚体外发育的影响   总被引:9,自引:0,他引:9  
张德福  刘东  汤琳琳  王英  陈茵  王凯  王根林  LIN Cailu 《遗传》2007,29(2):211-217
系统探讨了体细胞的组织来源及培养代数对猪核移植重构胚发育的影响。体外成熟培养40~44 h的猪卵母细胞去核后, 将经血清饥饿(0.5%FBS)培养2~9天、0.1 mg/L Aphidicolin(APD)培养+0.5% FBS培养2~9天或一般培养法(10% FBS)培养的卵丘细胞、颗粒细胞、输卵管上皮细胞和耳皮成纤维细胞, 直接注射到去核的卵母细胞质中, 或注射到卵周隙中, 再经电融合(100 V/mm, 30 [mu]s, 电脉冲1次)构建重构胚。重构胚以钙离子载体A23817 或电脉冲结合6-DMAP 激活处理, 体外培养6天。耳皮成纤维细胞和颗粒细胞经0.1 mg/L APD + 0.5% FBS培养处理后的重组胚卵裂率, 均高于血清饥饿和一般培养处理的同种供体细胞(P<0.01)。卵丘细胞、颗粒细胞经0.1 mg/L APD + 0.5% FBS处理后进行核移植的分裂率和发育率均高于输卵管上皮细胞和耳皮成纤维细胞(P<0.05)。以猪颗粒细胞为核供体时, 电融合法的重构胚分裂率显著高于胞质内注入法(P<0.05), 但囊胚发育率无显著差异(P>0.05)。培养3代和6代的猪颗粒细胞以及培养6代和10代的耳皮成纤维细胞, 其具有正常二倍染色体的细胞比例均无显著差异(P>0.05); 以这2种细胞不同培养代数做供体进行核移植时, 各代之间核移胚的体外分裂率、囊胚发育率无显著差异(P>0.05)。这些结果表明: (1) 猪耳皮成纤维细胞和颗粒细胞经培养传代所建立起来的细胞系相对比较稳定; (2) 0.1 mg/L APD预培养处理供体细胞能提高猪体细胞核移植的效果, 血清饥饿培养则无明显效果; (3) 猪颗粒细胞和耳皮成纤维细胞等均可做供核细胞, 核移植后都能得到体细胞克隆的囊胚, 但前者的效果略优于后者, 且其核移植效果不受供核细胞培养代数的影响; (4) 电融合核移植胚胎的发育率高于胞质内直接注入法, 但两者的总体效率相近。  相似文献   

9.
通过体细胞核移植技术制作了人胰岛素原转基因牛。在CMV启动子指导下以内部核糖体进入位点序列(IRES)连接的新霉素抗性基因和绿色荧光蛋白基因组成了双重标记基因的筛选系统,用于转基因细胞的富集以及细胞和植入前胚胎的筛选。转基因通过电穿孔的方法(900V/cm,5ms)转入体外培养的牛胎儿成纤维细胞,基因转染细胞在添加G418 (800μg/mL)的培养基中培养10天以富集转基因细胞。选择表达绿色荧光蛋白的转基因细胞作为核供体进行体细胞核移植,重构胚经体外培养至囊胚阶段,选择表达绿色荧光蛋白的囊胚进行胚胎移植。为比较基因转染以及供体细胞所处周期对转基因细胞核移植胚胎发育的影响,用作核移植供体的转基因细胞或非转基因细胞先饥饿培养2—4天(0.5 ?S) ,然后恢复培养(10?S) 10 h使细胞同步化于G1期,以正常培养的细胞作为对照进行核移植。结果表明,转基因细胞作为核供体得到的核移植胚胎的体外囊胚发育率低于以非转基因细胞为核供体的对照组(23.2% VS 35.2 %,P<0.05) ;转基因细胞周期同步化处理与否对其克隆胚囊胚发育率无显著影响(23.2% VS 18.9 %,P>0.05)。胚胎移植后2个月直肠检查发现7头受体牛(每头移植2—4枚胚胎)中有一头妊娠,并最终发育足月产下一头小牛。聚合酶链反应(PCR)检测和DNA测序分析表明其为转人胰岛素原基因的转基因克隆牛。  相似文献   

10.
人-山羊异种核移植胚胎发育的初步研究   总被引:2,自引:0,他引:2  
以体外分离培养的人胚胎成纤维细胞为核供体,经血清饥饿培养后,通过显微操作技术移入山羊去核卵母细胞中,采用化学方法激活重组胚.通过体外培养观察,2-细胞胚胎发育率可达51.33%,4-细胞发育率为31.42%,但发育至桑椹胚阶段的胚胎数目大大减少,仅为9.73%.虽然目前尚未能获得异种核移植囊胚,但实验结果说明山羊成熟卵母细胞可以支持人体细胞核完成重编程,人-山羊异种体细胞核移植重组胚可在体外完成其早期发育.  相似文献   

11.
The influence of the stage of the cell cycle of donor nuclei on the development of mouse oocytes enucleated at telophase I was examined. After nuclear transplantation and activation, a high proportion of the oocytes remodelled a nucleus, emitted a polar body and formed a pronuclear-like nucleus. Most of the reconstituted embryos that received an interphase nucleus 30-32 h or 34-36 h after treatment with human chorionic gonadotrophin (hCG) arrested at the 2-cell stage. The reconstituted embryos were able to develop to blastocysts when nuclei from late 2-cell embryos (44-46 and 48-50 h after hCG) were transferred to the oocytes. The resulting blastocysts were transferred to recipients and ten live young were obtained from the embryos that formed a pronuclear-like nucleus after extrusion of a polar body. Thus, the developmental ability of the reconstituted embryos was critically influenced by the stage of the cell cycle of the donor nuclei.  相似文献   

12.
Pluripotency of isolated rabbit inner cell masses (ICMs) and cultured (3 days) inner cell mass (ICM) cells was tested by injecting these donor cells into day 3.5 blastocysts (experiment 1) or day 3 morulae (experiment 2) to produce chimeric embryos. Injected (n = 107) and noninjected (n = 103) embryos were transferred to the opposite uterine horns of the same recipient females. Chimerism was determined by adenosine deaminase (ADA) isozyme analysis on fetal tissue and by eye pigmentation at midgestation. In experiment 1, 53% and 64%, respectively, of blastocysts injected with ICMs or cultured ICM cells developed to midgestation, compared with 52% and 48% for controls. Of these fetuses, four (31%) and one (6%), respectively, had ADA chimerism. In experiment 2,38% and 62%, respectively, of the morulae injected with ICMs or cultured ICM cells developed to midgestation, compared with 46% and 56% for control morulae. Six (43%) chimeric fetuses from morulae injected with ICMs were detected by ADA analysis, but 12 (86%) chimeric fetuses were detected by eye pigmentation, indicating that eye pigmentation was a more sensitive marker for chimerism than our ADA assay. None of the 14 fetuses recovered after injecting morulae with cultured ICM cells were chimeric with either marker. No chimeras developed from control embryos. These studies demonstrate (1) that pregnancy rates are not compromised by injection of blastocysts or morulae with ICMs or cultured ICM cells, (2) that chimeric rabbit fetuses can be produced by injecting ICMs into either blastocysts or morulae, and (3) that cultured ICM cells can contribute to embryonic development when injected into blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Nuclear transfer (NT) techniques have advanced in the last few years, and cloned animals have been produced from somatic cells in several species including pig. In this study we examined the feasibility of using granulosa-derived cells (GCs) as donor cells combined with a microinjection procedure to transfer those nuclei. In vitro matured oocytes were enucleated by aspirating the first polar body and adjacent cytoplasm. Mural GCs infected with an enhanced green fluorescence protein (EGFP) gene were serum-starved (0.5% serum, 7 days), injected directly into cytoplasm of enucleated oocytes and the oocytes were electrically activated. The reconstructed embryos were cultured for 7 days and stained with Hoechst 33342 to determine the number of nuclei. Non-manipulated oocytes were electrically activated and cultured as controls. At 9 h post-activation, the pronuclear formation rates were 78.7+/-3.7% in NT and 97.4+/-4.4% in controls at 9 h post-activation. After 7 days culture, the cleavage rates were 24.5+/-7.2% in NT and 79.3+/-5.6% in controls. The blastocysts formation rates were 4.9+/-2.4% in NT and 26.8+/-3.8% in controls. To examine the effect of activation time on development of NT embryos, oocytes were activated at 0-0.5, 1-2, or 3-4 h post-injection. At 18 h post-activation the pronuclear formation rates were higher (62.5+/-7.3%) in the 3-4 h group as compared to the 0-0.5 h (22.0+/-12.5%) or 1-2h (44.5+/-6.3%) groups (P<0.05). However, the cleavage rates (9.6+/-4.6 to 10.7+/-4.2%) and the blastocysts formation rates (1.2+/-2.4 to 4.9+/-3.7%) were not different among treatments (P>0.05). The mean cell number of blastocysts was 15.7+/-5.7 in NT and 25.3+/-24.7 in controls. Green fluorescence was observed in roughly half of the embryos from the one-cell to the blastocyst stage. These results indicate that granulosa-derived cell nuclei can be remodeled in the cytoplasm of porcine oocytes, and that the reconstructed embryos can develop to the blastocyst stage. In addition, EGFP can be used as a marker for gene expression of donor nuclei.  相似文献   

14.
Lu F  Shi D  Wei J  Yang S  Wei Y 《Theriogenology》2005,64(6):1309-1319
The objective of this study was to explore the feasibility of employing adult fibroblasts as donor cells in interspecies nuclear transfer (NT) between buffaloes and cattle. Buffalo and bovine oocytes matured in vitro for 22 h were enucleated by micromanipulation using the Spindle View system. An ear fibroblast, pretreated with 0.1 microg/mL aphidicolin for 24 h, followed by culture for 2-9 days in Dulbecco's Modified Eagle's Media+0.5% fetal bovine serum, was introduced into the cytoplast by microinjection. Reconstructed oocytes were activated by exposure to 5 microM ionomycin for 5 min and 2 mM 6-dimethylaminopurine for 3 h. When buffalo adult fibroblasts were used as donor cells, there were no differences (P < 0.75) in the cleavage rate (66.2% versus 64.0%) between bovine and buffalo recipient oocytes, but more embryos derived from bovine cytoplasts developed to blastocysts than from buffalo cytoplasts (13.3% versus 3.0%, P < 0.05). When bovine adult fibroblasts were used as donor nuclei, both cleavage rate (45.3%) and blastocyst yield (4.5%) of NT embryos derived from buffalo cytoplasts were lower than those of NT embryos derived from bovine cytoplasts (65.5 and 11.9%, P < 0.05). The proportion of parthenogenetic buffalo (29.1%) or bovine (35.6%) oocytes developing to blastocysts was higher than those of NT embryos (P < 0.01). Interspecies NT embryos were derived from the donor cells and 55.0-61.9% of them possessed a normal diploid karyotype. In conclusion, embryos reconstructed by interspecies NT of adult fibroblasts between buffaloes and cattle developed to blastocysts, but bovine cytoplasts may direct embryonic development more effectively than buffalo cytoplasts, regardless of donor cell species.  相似文献   

15.
The developmental ability of reconstructed blastocysts from C57BL/6 strain mouse inner cell masses (ICMs) and Kunming strain mouse trophoblasts was assessed. The procedure of ICM replacement was as follows: C57BL/6 ICMs were separated from the blastocysts using immunosurgery. A slit was made in the zona pellucida of a Kunming blastocyst to allow its ICM to extrude. The C57BL/6 ICM was injected into the Kunming blastocoele, and the extruded Kunming ICM was cut off. The reconstructed blastocysts were able to re-expand (77%) and hatch (27.3%) in vitro. A total of 64 reconstructed blastocysts and 124 Kunming blastocysts were co-transferred into the uteri of 11 pseudopregnant Kunming mice, and an ICM replacement offspring was born. The results indicate that reconstructed embryos obtained by inter-strain ICM replacement have the ability to develop to term. This technique may provide a method to solve the pregnancy failure in interspecific cloning.  相似文献   

16.
The objective of the study was to investigate interspecies somatic cell nuclear transfer (iSCNT) embryonic potential and mitochondrial DNA (mtDNA) segregation during preimplantation development. We generated bovine-ovine reconstructed embryos via iSCNT using bovine oocytes as recipient cytoplasm and ovine fetal fibroblast as donor cells. Chromosome composition, the total cell number of blastocyst and embryonic morphology were analyzed. In addition, mtDNA copy numbers both from donor cell and recipient cytoplasm were assessed by real-time PCR in individual blastocysts and blastomeres from 1- to 16-cell stage embryos. The results indicated the following: (1) cell nuclei of ovine fetal fibroblasts can dedifferentiate in enucleated bovine ooplasm, and the reconstructed embryos can develop to blastocysts. (2) 66% of iSCNT embryos had the same number of chromosome as that of donor cell, and the total cell number of iSCNT blastocysts was comparable to that of sheep parthenogenetic blastocysts. (3) RT-PCR analysis in individual blastomeres revealed that the ratio of donor cell mtDNA: recipient cytoplasm mtDNA remained constant (1%) from the one- to eight-cell stage. However, the ratio decreased from 0.6% at the 16-cell stage to 0.1% at the blastocyst stage. (4) Both donor cell- and recipient cytoplasm-derived mitochondria distributed unequally in blastomeres with progression of cell mitotic division. Considerable unequal mitochondrial segregation occurred between blastomeres from the same iSCNT embryos.  相似文献   

17.
With the ultimate goal of establishing experimental protocols necessary for cloning ferrets, the present study has established parameters for the reconstruction of ferret embryos by nuclear transfer (NT) using G0/G1-phase donor fetal fibroblasts. Cumulus-oocyte complexes were harvested from superovulated ferrets and cultured in maturation medium for 24 h. Matured oocytes were then enucleated and injected with the fibroblast nuclei derived from 14-16-h serum-starved cells. Reconstructed embryos were then activated by a combination of electric pulses and chemical stimulations. Subsequently, the reconstructed and activated embryos were either cultured in vitro or transferred to pseudopregnant ferrets to evaluate their developmental capacity in vitro and in vivo. Our results demonstrated that 56.3% of reconstructed embryos (n = 187) cleaved, while 26.0% and 17.6% developed to morula and blastocyst phases in vitro, respectively. The blastocysts derived from NT embryos demonstrated normal morphology by differentially staining as compared to normal blastocysts developed in vivo following fertilization. In vivo developmental studies at 21 days posttransplantation demonstrated 8.8% of reconstructed embryos (n = 91) implanted into the uterine lining of recipients, while 3.3% formed fetuses. However, reconstructed embryos (n = 387) failed to develop to term (42 days). These results demonstrate donor nuclei of G0/G1-phase fetal fibroblast cells can be reprogrammed to support the development of reconstructed ferret embryos in vitro and in vivo; however, a significant third-trimester block occurs preventing full-term development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号