共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary The morphology of postnatal differentiation of the Golgi apparatus, the nucleus, the perikaryon, and the dendrites was studied in Purkinje cells of the rat cerebellum for 30 days after birth using histochemical, histological, and electron microscopic methods.The Golgi apparatus during differentiation undergoes morphological and positional changes. From the 1st to 7th postnatal day, the Golgi apparatus is found in a supranuclear position, and is connected with the axes of differentiating primary dendrites by beam-like processes. From days 8 to 11 this connection disappears, and most of the Golgi apparatus assumes a lateronuclear and infranuclear position. After the 11th or 12th day, the Golgi apparatus is found in perinuclear and peripheral cytoplasmic positions. The formation of granular endoplasmic reticulum occurs in the vicinity of the perinuclear Golgi apparatus. The differentiation of cell and nuclear forms requires approximately 20 days. The morphological changes of differentiation are discussed in relation to the participation of the Golgi apparatus in the differentiation of dendrites and in the formation of the granular endoplasmic reticulum. 相似文献
2.
Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum 下载免费PDF全文
Stéphanie Hallée Catherine Thériault Dominic Gagnon Jessica Kehrer Friedrich Frischknecht Gunnar R. Mair Dave Richard 《Cellular microbiology》2018,20(8)
Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans‐cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis‐Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages. 相似文献
3.
Gabrielle R Neises Philip G Woodman Terry D Butters Richard L Ornberg Frances M Platt 《Biology of the cell / under the auspices of the European Cell Biology Organization》1997,89(2):123-131
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound. 相似文献
4.
Summary Using cryo-fixation and freeze-substitution electron microscopy, the effects of brefeldin A (BFA) on the structure of the trans-Golgi network (TGN), the endoplasmic reticulum (ER), and Golgi bodies in the unicellular green algaBotryococcus braunii were examined at various stages of the cell cycle. In the presence of BFA, all the TGNs of interphase and dividing cells aggregated to form a single tubular mass. In contrast, the TGNs decomposed just after cell division and disappeared during cell wall formation. Throughout the cell cycle, the TGN produced at least six kinds of vesicles, of which two were not formed in the presence of BFA: vesicles with a diameter of 200 nm and fibrillar substances, which formed in interphase cells; and vesicles with a diameter of 180–240 nm, which may participate in septum formation. In addition, the number of clathrin-coated vesicles attaching to the TGN decreased. In interphase cells, BFA induced the disassembly of Golgi bodies and an increase in the smooth-ER cisternae at the cis-side of Golgi bodies. This result may suggest the existence of retrograde transport from the Golgi bodies to the ER in the presence of BFA. These drastic structural changes in the Golgi bodies and the ER of interphase cells were not observed in BFA-treated dividing cells.Abbreviations BFA
brefeldin A
- ER
endoplasmic reticulum
- TGN
trans-Golgi network 相似文献
5.
Morphogenesis and dynamics of the yeast Golgi apparatus 总被引:2,自引:0,他引:2
Morin-Ganet MN Rambourg A Deitz SB Franzusoff A Képès F 《Traffic (Copenhagen, Denmark)》2000,1(1):56-68
A kinetic and morphometric study was conducted with the electron microscope to clarify the biogenesis and structural diversity of the Golgi apparatus in the yeast Saccharomyces cerevisiae . Secretion was synchronized by inhibiting protein synthesis and/or by subjecting thermosensitive secretory mutants to double temperature shifts. Five membrane-bounded structures disappeared or reappeared in an orderly manner at approximately the rate of secretory protein flow. 1) The first detectable post-ER intermediates were very short-lived clusters of small vesicles that appeared next to the endoplasmic reticulum (ER). 2) Their constituent small vesicles were rapidly bridged by membrane tubules in a SEC18 -dependent manner, giving short-lived tubular clusters of small vesicles, analogous to mammalian vesicular-tubular clusters. 3) Fine and 4) large nodular networks (coated with the Golgi protein Sec7), and 5) secretory granules. Upon relieving a secretory block, each structure successively reappeared, seemingly by transformation of the previous one. When no secretory cargo was to be transported, these structures were not renewed. They disappeared more than five times faster than some Golgi enzymes such as Och1p, implying that the latter are recycled and perhaps partially retained. Retention could arise from intra-compartmental flow of cargo/carrier, hinted at by the varying calibers within a single nodular network. 相似文献
6.
On April 1898 Camillo Golgi communicated to the Medical-Surgical Society of Pavia, the discovery of the “internal reticular apparatus”, a novel intracellular organelle which he observed in nerve cells with the silver impregnation he had introduced for the staining of the nervous system. Soon after the discovery it became evident that this cellular component, which was also named the “Golgi apparatus”, was a ubiquitous structure in eukaryotic cells. However the reality of the organelle was questioned for years and many cytologists considered the internal reticular apparatus as an artefact due to the fixation and/or metallic impregnation procedure. The controversy was finally solved in the mid-1950s by electron microscopy when the Golgi apparatus definitely acquired its dignity of being a genuine cell organelle. The designation of “Golgi complex” entered officially in the literature in 1956. Both the terms Golgi apparatus and Golgi complex are currently interchangeable. However a quick “the Golgi” and the introduction of Golgi in adjectival form are now prevalent in the blooming scientific literature on the organelle. Thus Camillo Golgi underwent his final transformation and, becoming the eponym of the organelle he had discovered, he found a way to immortality. 相似文献
7.
8.
In onion root meristems, the number of dictyosomes per cell shows a kinetics of growth strongly related to the cell cycle. During the interphase of steady-state proliferative cells, the volume density and numerical density of the Golgi apparatus decrease to reach minimum values in late-interphase cells, characterized by their greatest length. This pattern is also found in the total volume occupied by Golgi apparatus. Once in mitosis, the above-mentioned parameters begin to increase reaching maximum mean values in telophase. After the experimental uncoupling of chromosome and growth cycles by presynchronization with hydroxyurea, we found a similar behaviour pattern in the Golgi apparatus: decreasing values during interphase and a triggering of Golgi-apparatus growth in prophase independently of the bigger cell sizes reached in mitosis as an effect of pretreatment with hydroxyurea. These results indicate a cyclic kinetics of this subcellular component in higher-plant meristems, coupled with early mitotic events. 相似文献
9.
Dr. Stephan Peter 《Cell and tissue research》1976,168(1):45-53
The epithelioid cells of the juxtaglomerular apparatus have been studied with respect to the release mechanism of the secretory granules. Invaginations of the plasma membrane into the interior of the epithelioid cells are interpreted as stages before or after an exocytotic process. Granules are sometimes observed in close contact with the plasma membrane, and material with electron density similar to that of the granules can also be observed in the invaginations. These morphological features suggest that the granular material of the epithelioid cells is extruded into the texture of the basal lamina. Furthermore, a dense network of microtubules and microfilaments is described and the functional role of this system in exocytosis is discussed. 相似文献
10.
11.
Summary Ultrastructural studies have revealed the presence of unusual membrane complexes within developing mouse oocytes. These structures, most obvious 18 days post fertilization, are found in the nucleus or cytoplasm of cells in meiotic prophase. The complexes, usually found in small groups, are characterized by a slightly bowed appearance, and a thin middle section that is vesiculated at each end. At high magnification the middle section exhibits a pentalaminar structure similar to tight junctional complexes, while the looped membranes of the vesiculated ends are trilaminar in appearance. In addition to being free in the nucleoplasm or cytoplasm, the complexes are also seen in continuity with the inner and outer leaflets of the nuclear envelope, and with typical membranes forming cytoplasmic tubular systems. The possible formation of these complexes from blebs or vesicles derived from the nuclear envelope is presented and the role that these structures may play in developing oocytes is discussed.Supported by Louisiana State University Medical School Institutional Grant.Dr. Skalko's current address is Birth Defects Institute, New York State Health Department, Albany, New York. The authors wish to thank Mr. Garbis Kerimian for his excellent photographic work, Mrs. Janell Buck, Mrs. Edna Burgess and Mrs. Eunice Schwartz for their excellent technical and secretarial assistance. 相似文献
12.
Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis 总被引:7,自引:0,他引:7 下载免费PDF全文
Lane JD Lucocq J Pryde J Barr FA Woodman PG Allan VJ Lowe M 《The Journal of cell biology》2002,156(3):495-509
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity. 相似文献
13.
Summary The number of dictyosomes found in one central cell section in antheridial filaments ofChara vulgaris increases proportionally to the cell length during interphase. The activity of Golgi apparatus was expressed by a number of Golgi vesicles surrounding a single dictyosome. These vesicles are most numerous during mitosis and cytokinesis,i.e., prior to and during cell plate formation. In the middle and late S phase the number of Golgi vesicles decreases by about 25%; subsequently, during the early and middle G2, it increases again. At the end of the G2 phase, Golgi vesicles are the scarcest.The increase in the number of Golgi vesicles during the G2 phase coincides with the period of intense cellular elongation, and, thus, it is probably related to the enhanced synthesis of cell wall components.Coated vesicles are most numerous in prophase, metaphase, and early telophase, and during interphase in both late S and G2 phase. It was found that the number of coated vesicles is proportional to the degree of condensation of nuclear chromatin.This work was supported by the Polish Academy of Sciences within the project 09.7.3.1.4. 相似文献
14.
Effects of antimicrotubular agents on the fine structure of the Golgi complex in embryonic chick osteoblasts 总被引:2,自引:0,他引:2
Embryonic chick frontal bones were cultured in the presence of colchicine or vinblastine and subsequently examined by tranmission electron microscopy. In control cultures the osteoblasts showed a large Golgi complex consisting of dictyosomes arranged in a well-defined juxtanuclear area. Microtubules were particularly numerous within this Golgi area although they could be observed throughout the cytoplasm. Colchicine and vinblastine caused the disappearance of cytoplasmic microtubules, while bundles of 10 nm diameter filaments appeared more frequently. In addition, cell polarity was lost and the Golgi complex became disorganized, with the dictyosomes randomly dispersed in the cytoplasm and showing a decreased number of cisternae and an increased number of vacuoles, the latter generally lacking stainable material. Increased number of autophagosomes were also noted. These findings indicate that microtubules function in the organization of the Golgi complex in osteoblasts. In view of the well documented role of this organelle system in collagen secretion it is suggested that previously observed secretory disturbances produced by antimicrotubular drugs may be due to a defective transfer of material to the dictyosomes and/or a defect in the packaging and transport of such material away from them. 相似文献
15.
Ruan Q Wang Q Xie S Fang Y Darzynkiewicz Z Guan K Jhanwar-Uniyal M Dai W 《Experimental cell research》2004,294(1):51-59
The Golgi apparatus undergoes extensive fragmentation during mitosis in animal cells. Protein kinases play a critical role during fragmentation of the Golgi apparatus. We reported here that Polo-like kinase 3 (Plk3) may be an important mediator during Golgi breakdown. Specifically, Plk3 was concentrated at the Golgi apparatus in HeLa and A549 cells during interphase. At the onset of mitosis, Plk3 signals disintegrated and redistributed in a manner similar to those of Golgi stacks. Nocodazole activated Plk3 kinase activity, correlating with redistribution of Plk3 signals and Golgi fragmentation. In addition, treatment with brefeldin A (BFA), a Golgi-specific poison, also resulted in disappearance of concentrated Plk3 signals. Plk3 interacted with giantin, a Golgi-specific protein. Expression of Plk3, but not the kinase-defective Plk3 (Plk3(K52R)), resulted in significant Golgi breakdown. Given its role in cell cycle progression, Plk3 may be a protein kinase involved in regulation of Golgi fragmentation during the cell cycle. 相似文献
16.
Dr. E. I. Grodums 《Cell and tissue research》1977,185(2):231-237
Summary The mitochondrial structure in the brown adipose cells of the golden mantled squirrel, Citellus lateralis, was examined throughout the year in biopsy samples. The mitochondria showed remarkable and apparently reversible changes in size and internal structure related to the physiologic activity of the animal. In the active animal the size of the largest mitochondria was 2.4 m × 1.5 m; during hibernation it increased to 7 m × 2.5 m; and during arousal it reached 11.2m × 5.3 m. The cristae of the mitochondria in the brown adipose cells of the animals in hibernation phase formed loops, whorls and mesh-like interconnections. During the arousal phase they underwent further configurational changes. The most remarkable structure was associated with mitochondria of most unusual proportions which by dissolution gave rise to a new generation. This was a common finding during arousal but did not occur in any other phase of the hibernation cycle. The new mitochondria were virtually indistinguishable from those of brown adipose cells of any active animal.Supported by a grant from the Medical Research Council of CanadaThe author is grateful to colleagues, Dr. G. Dempster and Dr. W.A. Spencer, for many valuable suggestions in the course of the work 相似文献
17.
Guy Brugerolle Eric Viscogliosi 《Biology of the cell / under the auspices of the European Cell Biology Organization》1994,81(3):277-285
Summary— In parabasalid flagellates, trichomonads and hypermastigids, the stack of cisternae of the Golgi apparatus are supported by striated roots attached to the basal bodies of flagella forming the so-called parabasal apparatus. Monoclonal antibodies raised for several trichomonad species, Monocercomonas, Trichomonas and Tetratrichomonas, label the parabasal fibre in immunofluorescence or immunogold staining and protein bands in immunoblotting. Several antibodies cross-react between trichomonad species, and one of them labels the homologous parabasal fibre in the hypermastigids: Trichonympha, Joenia, Pseudotrichonympha and Holomastigotoides. Considering the molecular mass range of the labelled proteins (100–135 kDa) and the lack of antibody cross-reactivity with the striated root proteins (centrin, assemblin, kinetodesmal protein, ciliary root proteins of epithelial ciliated cells) of other organisms, these proteins recognized by these antibodies seem to represent a new class of protein forming striated roots. The occurrence and significance of parabasal organization in eukaryogenesis is discussed. 相似文献
18.
Ultrastructural,cyto- and biochemical observations during turnover of plasma membrane in duck salt gland 总被引:2,自引:0,他引:2
Fred E. Hossler Michael P. Sarras Jr. E. Raworth Allen 《Cell and tissue research》1978,188(2):299-315
Summary The mechanism of plasma membrane turnover was investigated using the duckling salt gland as a model system. Feeding fresh water to saltstressed ducklings results in a decrease in the Na, K-ATPase in salt gland to nonstressed levels in about 7 days, as measured by ATP hydrolysis and 3H-ouabain binding. Electron micrographs reveal that this is accompanied by a decrease in plasma membrane infoldings on the basal and lateral borders of gland secretory cells. Simultaneously there is an increase in filamentous material and a rise in acid phosphatase and peptidase activities in these cells. Cytochemistry shows that the acid phosphatase activity is mostly associated with the basal or basolateral regions of secretory cells. These observations could indicate that the removal of plasma membrane components is accomplished by internalization and digestion within the secretory cells. 相似文献
19.
The overexpression of GMAP-210 blocks anterograde and retrograde transport between the ER and the Golgi apparatus 总被引:1,自引:0,他引:1
Pernet-Gallay K Antony C Johannes L Bornens M Goud B Rios RM 《Traffic (Copenhagen, Denmark)》2002,3(11):822-832
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules. 相似文献
20.
The steady-state distribution of glycosyltransferases between the Golgi apparatus and the endoplasmic reticulum is approximately 90:10 总被引:5,自引:1,他引:5
Several lines of evidence support a novel model for Golgi protein residency in which these proteins cycle between the Golgi apparatus and the endoplasmic reticulum (ER). However, to preserve the functional distinction between the two organelles, this pool of ER-resident Golgi enzymes must be small. We quantified the distribution for two Golgi glycosyltransferases in HeLa cells to test this prediction. We reasoned that best-practice, quantitative solutions would come from treating images as data arrays rather than pictures. Using deconvolution and computer calculated organellar boundaries, the Golgi fraction for both endogenous beta1,4-galactosyltransferase and UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 fused with green fluorescent protein (GFP) was 91% by fluorescence microscopy. Immunogold labeling followed by electron microscopy and model analysis yielded a similar value. Values reflect steady-state conditions, as inclusion of a protein synthesis inhibitor had no effect. These data strongly suggest that the fluorescence of a GFP chimera with an organellar protein can be a valid indicator of protein distribution and more generally that fluorescent microscopy can provide a valid, rapid approach for protein quantification. In conclusion, we find the ER pool of cycling Golgi glycosyltransferases is small and approximately 1/100 the concentration found in the Golgi apparatus. 相似文献