首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

2.
The curvature elastic modulus (bending stiffness) of stearoyloleoyl phosphatidylcholine (SOPC) bilayer membrane is determined from membrane tether formation experiments. R. E. Waugh and R. M. Hochmuth 1987. Biophys. J. 52:391-400) have shown that the radius of a bilayer cylinder (tether) is inversely related to the force supported along its axis. The coefficient that relates the axial force on the tether to the tether radius is the membrane bending stiffness. Thus, the bending stiffness can be calculated directly from measurements of the tether radius as a function of force. Giant (10-50-microns diam) thin-walled vesicles were aspirated into a micropipette and a tether was pulled out of the surface by gravitational forces on small glass beads that had adhered to the vesicle surface. Because the vesicle keeps constant surface area and volume, formation of the tether requires displacement of material from the projection of the vesicle in the pipette. Tethers can be made to grow longer or shorter or to maintain equilibrium by adjusting the aspiration pressure in the micropipette at constant tether force. The ratio of the change in the length of the tether to the change in the projection length is proportional to the ratio of the pipette radius to the tether radius. Thus, knowing the density and diameter of the glass beads and measuring the displacement of the projection as a function of tether length, independent determinations of the force on the tether and the tether radius were obtained. The bending stiffness for an SOPC bilayer obtained from these data is approximately 2.0 x 10(-12) dyn cm, for tether radii in the range of 20-100 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The free energy potential (affinity) for aggregation of human red blood cells and lipid vesicles in Dextran solutions and blood plasma has been quantitated by measuring to what extent a vesicle is encapsulated by the red cell surface. The free energy reduction per unit area of contact formation (affinity) was computed from the observation of the fractional extent of encapsulation at equilibrium with the use of a relation based on the elastic compliance of the red cell membrane as it is deformed to adhere to the vesicle surface. Micromanipulation methods were used to select and transfer single lipid vesicles (2-3 X 10(-4) cm diameter) from a chamber that contained the vesicle suspension to a separate chamber on the microscope stage that contained red cells in an EDTA buffer with Dextran or whole plasma. The vesicle and a red cell were maneuvered into close proximity and contact allowed to take place without forcing the cells together. To evaluate the effects of surface charge density and steric interactions on aggregation, vesicles were made from mixtures of egg phosphatidylcholine (PC) and bovine phosphatidylserine (PS) over a range of mole ratios (PC/PS)from (1:0) to (1:1); the vesicles were formed by rehydration in buffer. The Dextran solutions were made with a sharp-cut fraction of 36,500 MW in a concentration range of 0-10% by weight in grams (wt/wt).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action. At antibiotic levels above 1:1 antibiotic: cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentraion, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

7.
A technique has been developed for monitoring the interaction of charged phospholipid vesicles with planar bilayer lipid membranes (BLM) by use of the antibiotics Valinomycin, Nonactin, and Monazomycin as surface-charge probes. Anionic phosphatidylserine vesicles, when added to one aqueous compartment of a BLM, are shown to impart negative surface charge to zwitterionic phosphatidylocholine and phosphatidylethanolamine bilayers. The surface charge is distributed asymmertically, mainly on the vesicular side of the BLM, and is not removed by exchange of the vesicular aqueous solution. Possible mechanisms for the vesicle-BLM interactions are discussed.  相似文献   

8.
Giant unilamellar vesicles (GUVs) containing cholesterol often have a wide distribution in lipid composition. In this study, GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC)/cholesterol and 1,2-diphytanoyl-sn-glycero-3-phosphocholine(diPhyPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesterol were prepared from dry lipid films using the standard electroformation method as well as a modified method from damp lipid films, which are made from compositional uniform liposomes prepared using the Rapid Solvent Exchange (RSE) method. We quantified the lipid compositional distributions of GUV by measuring the miscibility transition temperature of GUVs using fluorescence microscopy, since a narrower distribution in the transition temperature should correspond to a more uniform distribution in GUV lipid composition. Cholesterol molecules can demix from other lipids in dry state and form cholesterol crystals. Using optical microscopy, micron-sized crystals were observed in some dry lipid films. Thus, a major cause of GUV lipid compositional heterogeneity is the demixing of lipids in the dry film state. By avoiding the dry film state, GUVs prepared from damp lipid films have a better uniformity in lipid composition, and the standard deviations of miscibility transition temperature are about 2.5 times smaller than that of GUVs prepared from dry lipid films. Comparing the two ternary systems, diPhyPC/DPPC/cholesterol GUVs has a larger cholesterol compositional heterogeneity, which directly correlates with the low maximum solubility of cholesterol in diPhyPC lipid bilayers (40.2±0.5mol%) measured by light scattering. Our data indicate that cholesterol interacts far less favorably with diPhyPC than it does with other PCs. The damp lipid film method also has a potential of preparing GUVs from cell membranes containing native proteins without going through a dry state.  相似文献   

9.
Lipid bilayer was deformed by the electrostatic/electrokinetic forces induced by the fixed charges on the top monolayer-solution interface. The strains, stresses and energy were simulated using finite element method. The elastic moduli of the heads were four times greater than those of tails sections, but were individually isotropic. The physics of the situation was evaluated using a coupled system of linear elastic equations and electrostatic-electrokinetic (Poisson-Nernst-Planck) equations. The Coulomb force (due to fixed charges in the electric field), and the dielectric force (due to uneven electric field and the solution-membrane permittivity mismatch) bend the membrane, but unevenly. Whereas the bottom monolayer extends vertically (towards charged surface), the top monolayer compresses. In contrast the top monolayer extends horizontally, but the bottom monolayer compresses. The horizontal normal stress is higher in the heads than in the tails sections, but is similar in two monolayers, whereas the vertical normal stress is small. The horizontal normal stress is associated with horizontal normal strain, and vertical with both vertical and horizontal strain. Surprisingly, the shear stress (an indicator where the membrane will deform), is greater in the tails sections. Finally, the elastic energy (which is clearly greater in the heads sections) is dominated by its horizontal component and peaks in the middle of the membrane. The shear component dominates in the tails sections, and is minimal in the membrane center. Even spatially uniform external force thus leads to complex membrane deformation and generates complex profiles of stress and elastic energy.  相似文献   

10.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

11.
In drug design, the usual strategy involves characterizing and comparing the shapes of molecules. We apply a simple method to accomplish this goal: determining the symmetry-independent shape groups (homology groups of algebraic topology) of a molecular surface.In this paper, we have adapted the method to describing the interrelation between Van der Waals and electrostatic potential surfaces. We describe rigorously the shape features in a series of molecules by using specific ranges of electrostatic potential over a Van der Waals surface. We consider a series of four nicotinic agonists as an example and discuss their expected activities as potential drugs on the basis of the shape similarities found.  相似文献   

12.
To clarify the mechanism of self-sustained oscillation of the electric potential between the two solutions divided by a lipid bilayer membrane, a microscopic model of the membrane system is presented. It is assumed, on the basis of the observed results (Yoshikawa, K., T. Omachi, T. Ishii, Y. Kuroda, and K. liyama. 1985. Biochem. Biophys. Res. Commun. 133:740-744; Ishii, T., Y. Kuroda, T. Omochi, and K. Yoshikawa. 1986. Langmuir. 2:319-321; Toko, K., N. Nagashima, S. liyama, K. Yamafuji, and T. Kunitake. Chem. Lett. 1986:1375-1378), that the gel-liquid crystal phase transition of the membrane drives the potential oscillation. It is studied, by using the model, how and under what condition the repetitive phase transition may occur and induce the potential oscillation. The transitions are driven by the repetitive adsorption and desorption of proton by the membrane surface, actions that are induced the periodic reversal of the direction of protonic current. The essential conditions for the periodic reversal are (a) at least one kind of cations such as Na+ or K+ are included in the system except for proton, and the variation of their permeability across the membrane due to the phase transition is noticeably larger than that of proton permeability; and (b) the phase transition has a hysteresis. When these conditions are fulfilled, the self-sustained potential oscillation may be brought about by adjusting temperature, pH, and the cation concentration in the solutions on both sides of the membrane. Application of electric current across the membrane also induces or modifies the potential oscillation. Periodic, quasiperiodic, and chaotic oscillations appear especially, depending on the value of frequency of the applied alternating current.  相似文献   

13.
Summary Stationary conductance experiments on neutral and negatively charged bilayer membranes in the presence of valinomycin or monactin agree with a recently proposed carrier transport model, which is common to both carrier types. This model assumes an interface reaction between a cation from the aqueous solution and a carrier molecule from the membrane phase to establish charge transport across the interface. The transport across the membrane interior is described by some kind of Eyring model. The discussion of the current-voltage characteristic, the dependence of membrane conductance on the carrier and K+ concentrations, and the comparison with appropriate experiments allow correlation of the different rate constants of the transport model. The results show that the rate constants partly depend on the surface charge of the membranes. This dependency can be described by introducing the Gouy-Chapman theory for charged surfaces into the transport model.It was found that the carrier molecules could be added either to the aqueous phase or to the membrane-forming solution. The quantitative treatment of this phenomenon gives an evaluation of the partition coefficient of the carrier molecules between the membrane bulk phase and water.  相似文献   

14.
Sonication of phospholipid vesicles may result, according to their liquid or solid crystal state, in the generation of unilamellar vesicles or structural defects within their bilayers, respectively. The transition temperature Tm of the phospholipid bilayer is usually the threshold temperature delineating the physical effects of ultrasound. However, for vesicles made from a mixture of two miscible phospholipids, this threshold temperature was not found to be the intermediate Tm of the phospholipid mixture bilayers, but the Tm of the lowest melting component. This was due to a simultaneous lateral phase separation of the two phospholipids induced by the sonication as demonstrated by differential scanning calorimetry analysis.  相似文献   

15.
We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin.  相似文献   

16.
Computational determination of optimal side-chain conformations in protein structures has been a long-standing and challenging problem. Solving this problem is important for many applications including homology modeling, protein docking, and for placing small molecule ligands on protein-binding sites. Programs available as of this writing are very fast and reasonably accurate, as measured by deviations of side-chain dihedral angles; however, often due to multiple atomic clashes, they produce structures with high positive energies. This is problematic in applications where the energy values are important, for example when placing small molecules in docking applications; the relatively small binding energy of the small molecule is drowned by the large energy due to atomic clashes that hampers finding the lowest energy state of the docked ligand. To address this we have developed an algorithm for generating a set of side-chain conformations that is dense enough that at least one of its members would have a root mean-square deviation of no more than R Å from any possible side-chain conformation of the amino acid. We call such a set a side-chain cover set of order R for the amino acid. The size of the set is constrained by the energy of the interaction of the side chain to the backbone atoms. Then, side-chain cover sets are used to optimize the conformation of the side chains given the coordinates of the backbone of a protein. The method we use is based on a variety of dead-end elimination methods and the recently discovered dynamic programming algorithm for this problem. This was implemented in a computer program called Octopus where we use side-chain cover sets with very small values for R, such as 0.1 Å, which ensures that for each amino-acid side chain the set contains a conformation with a root mean-square deviation of, at most, R from the optimal conformation. The side-chain dihedral-angle accuracy of the program is comparable to other implementations; however, it has the important advantage that the structures produced by the program have negative energies that are very close to the energies of the crystal structure for all tested proteins.  相似文献   

17.
Two kinds of functionalization of a lipid bilayer vesicle by titania were achieved by utilizing a cerasome-forming lipid, which is the starting material to prepare a cerasome, a morphologically stable lipid bilayer vesicle having an atomic layer of siloxane networks on its surface. One system is the preparation of the titania-coated cerasomes by immobilizing nanaometer-sizes of titania onto the surface siloxane network of cerasomes. The other is the creation of an asymmetric lipid bilayer structure on the surface of the colloidal titania particles. The characteristics of these surface- and core-functionalized vesicles were investigated, and it was found that these conjugates showed photocatalytic activity as evaluated by photolysis experiments of the cationic dye methylene blue.  相似文献   

18.
Nitro-2,1,3-benzoxadiazol-4-yl (NBD) group is a widely used, environment-sensitive fluorescent probe. The negatively charged dithionite rapidly reduces the accessible NBD-labeled lipids in liposomes to their corresponding nonfluorescent derivatives. In this study both the phospholipid headgroup and acyl chain NBD-labeled L-alpha-1,2-dipalmitoyl-sn-glycero-3-phospho-[N-(4-nitrobenz-2-oxa-1,3-diazole)-ethanolamine] (DPPN) and 1-acyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), respectively, were employed. The correlation of both the rate coefficient k(1) of the redox reaction and the fluorescence properties of the two probes with the membrane dipole potential Psi in fluid dipalmitoylglycerophosphocholine (DPPC) liposomes is demonstrated. When Psi of the bilayer was varied (decreased by phloretin or increased by 6-ketocholestanol), the value for k1 decreased for both DPPN and NBD-PC with increasing Psi. For both fluorophores a positive correlation to Psi was evident for the relative fluorescence emission intensity (RFI, normalized to the emission of the fluorophore in a DPPC matrix). The relative changes in emission intensity as a function of Psi were approximately equal for both NBD derivatives. Changes similar to those caused by phloretin were seen when dihexadecylglycerophosphocholine (DHPC) was added to DPPC liposomes, in keeping with the lower dipole potential for the former lipid compound compared with DPPC. These effects of Psi on NBD fluorescence should be taken into account when interpreting data acquired using NBD-labeled lipids as fluorescent probes.  相似文献   

19.
Two types of chromophoric amphiphiles were synthesized: one of them possesses a molecular structure of N,N-dialkyl aromatic amino acid (5X18 type, where X is A or Cz), and the other alpha,gamma-dialkylglutamate connected to aromatic amino acid (mXG12 type, where m is an integer). 5-N-Ethylcarbazolyl and 9-anthryl groups were chosen as the chromophore, and introduced to each amino acid derivative. All the amphiphiles formed assembly showing gel-liquid crystalline phase transition. The phase-transition temperature of the assembly composed of mXG12-type amphiphile was higher than that of 5X18-type amphiphile. Absorption and CD spectra of 6-(trimethylammonium)hexanoyl-L-3-(5-N-ethylcarbazolyl) alanine N,N-dioctadecylamide bromide (5Cz18) in the assembly indicated the absence of strong ground-state interactions between the carbazolyl groups, while those of 6-(trimethylammonium)hexanoyl-L-3-(5-N-ethylcarbazolyl)alanyl-L-gl utamic acid alpha,gamma-didodecyl ester (5CzG12) or 11-(trimethylammonium)undecanoyl-L-3-(5-N-ethylcarbazolyl)al anyl-L-glutamic acid alpha,gamma-didodecyl ester (10CzG12) indicated the ground-state interactions based on dimer or higher aggregates. Fluorescence spectra of 5Cz18 showed very weak excimer emission, while excimer and/or excited dimer or higher aggregates were observed in the assembly of 5CzG12 or 10CzG12. Similar results were obtained for amphiphiles (mAG12) with anthryl and hydroxyethyldimethylammonium groups in places respectively of carbazolyl and trimethylammonium groups of 5CzG12 and 10CzG12. Taking these results together into consideration, the molecular packing of mXG12 in the assembly should be tighter than that of 5X18. In the binary assembly of 6-(trimethylammonium)hexanoyl-L-3-(9-anthryl) alanine N,N-dioctadecylamide bromide (5A18)/5Cz18 (1/99 mol/mol), about 60% of photoenergy absorbed by the carbazolyl groups was transferred to the anthryl groups, indicating an efficient energy migration along the two-dimensional array of carbazolyl chromophores of 5Cz18. On the other hand, in the mCzG12/mAG12 binary assembly, the energy-transfer efficiency was much lower due to the formation of dimer or the higher aggregates acting as energy-dissipating sites.  相似文献   

20.
alpha-Sarcin is a fungal cytotoxic protein that inactivates the eukaryotic ribosomes. A kinetic study of the aggregation and lipid mixing promoted by this protein on phosphatidylglycerol (PG) and phosphatidylserine (PS) vesicles has been performed. Egg yolk PG, bovine brain PS, dimyristoyl-PG (DMPG) and dimyristoyl-PS (DMPS) vesicles have been considered. The initial rates of the vesicle aggregation induced by the protein have been measured by stopped-flow 90 degrees light scattering. The formation of a vesicle dimer as the initial step of this process was deduced from the second-order dependence of the initial rates on phospholipid concentration. The highest alpha-sarcin concentration studied did not inhibit the vesicle aggregation, indicating that many protein molecules are involved in the vesicle cross-linking. These are common characteristics of the initial steps of the aggregation produced by alpha-sarcin in the four types of phospholipid vesicles considered. However, the kinetics of the scattering values revealed that more complex changes occurred in the later steps of the aggregation process of egg PG and brain PS vesicles than in those of their synthetic counterparts. alpha-Sarcin produced lipid mixing in vesicles composed of DMPG or DMPS, which was measured by fluorescence resonance energy transfer assays. A delay in the onset of the process, dependent on the protein concentration, was observed. Measurement of the rates of lipid mixing revealed that the process is first order on phospholipid concentration. Egg PG and brain PS vesicles did not show lipid mixing, although they avidly aggregated. However, alpha-sarcin was able to promote lipid mixing in heterogeneous systems composed of egg PG+DMPG or brain PS+DMPS vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号