首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine IVF embryos developed on Days 7, 8 and 9 were equilibrated with 1.6 M propylene glycol (PG), 1.8 M ethylene glycol (EG), 1.1 M diethylene glycol (DEG) or 1.3 M ethylene glycol monomethyl ether (EME) for 10 to 20 min in modified phosphate buffered saline. (mPBS) supplemented with 10% superovulated cow serum. The embryos were loaded into 0.25-ml plastic straws and were placed directly into a 0 degrees C alcohol bath chamber and held for 2 min. They were cooled from 0 degrees C to -5.5 degrees C at 1 degrees C/min and then seeded, followed by a 10-min holding period at -5.5 degrees C. The straws were then cooled to -30 degrees C at 0.3 degrees C/min before plunging into liquid nitrogen. Embryos were thawed and placed directly into the culture medium and washed 3 times. The survival rates of the Day-9 embryos based on reappearance of blastocoele, expansion, and hatching after 48 h of post-thaw culture were significantly lower (P<0.01) than those of the Day-7 and 8 embryos, in all of the cryoprotectants tested. On the other hand, while the reappearance of blastocoele and expansion of blastocysts after 48 h of post-thaw culture were not significantly different among each cryoprotectant, the percentage of hatching blastocysts were significantly different between DEG and EME (P<0.05), between DEG and EG (P<0.01) and between PG and EG (P<0.05). These findings demonstrate that the age of the embryo (Day 7 and 8) is very important for the successful freezing of IVF bovine embryos. Also, as to the hatching rates, EME and EG are superior as cryoprotectants than the other 2 cryoprotectants tested.  相似文献   

2.
Zhang YZ  Zhang SC  Liu XZ  Xu YJ  Hu JH  Xu YY  Li J  Chen SL 《Theriogenology》2005,63(3):763-773
With the purpose of finding an ideal cryoprotectant or combination of cryoprotectants in a suitable concentration for flounder (Paralichthys olivaceus) embryo cryopreservation, we tested the toxicities, at culture temperature (16 degrees C), of five most commonly used cryoprotectants-dimethyl sulfoxide (Me2SO), glycerol, methanol (MeOH), 1,2-propylene glycol (PG) and ethylene glycol (EG). In addition, cryoprotective efficiency to flounder embryos of individual and combined cryoprotectants were tested at -15 degrees C for 60 min. Five different concentrations of each of the five cryoprotectants and 20 different combinations of these cryoprotectants were tested for their protective efficiency. The results showed that the toxicity to flounder embryos of the five cryoprotectants are in the following sequence: PG < MeOH < Me2SO < glycerol < EG (P < 0.05); whereas the protective efficiency of each cryoprotectant, at -15 degrees C for a period of 60 min, are in the following sequence: PG > Me2SO approximately MeOH approximately glycerol > EG (greater symbols mean P < 0.05, and approximate symbols mean P > 0.05). Methanol combined with any one of the other cryoprotectants gave the best protection, while ethylene glycol combined with any one of the other cryoprotectants gave the poorest protection at -15 degrees C. Toxicity effect was concentration dependent with the lowest concentration being the least toxic for all five cryoprotectants at 16 degrees C. For PG, MeOH and glycerol, 20% solutions gave the best protection at -15 degrees C; whereas a 15% solution of Me2SO, and a 10% solution of EG, gave the best protection at -15 degrees C.  相似文献   

3.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

4.
An integrated bovine embryo transfer program was conducted in collaboration with 11 Japanese prefectural livestock experiment stations. The program was conducted to evaluate the practicability of the direct transfer method for bovine embryos frozen-thawed in the presence of propylene glycol (PG) or ethylene glycol (EG) under on-farm conditions. Embryos at the compacted morula to expanded blastocyst stages were collected from superovulated donors on Day 7 or 8 after estrus and equilibrated in 1.6 M PG or 1.8 M EG in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 20% heat-inactivated calf serum. Embryos were then loaded individually into a 0.25-ml straw and placed directly into a cooling chamber of a programmable freezer precooled to -7 degrees C. After 2 min, the straw was seeded, maintained at -7 degrees C for 8 min more, and then cooled to -30 degrees C either at 0.3 degree C/min or 0.5 degree C/min before being plunged into liquid nitrogen. Embryos at the same stages were also frozen in the presence of 1.4 M glycerol (GLY) by a conventional method, which served as a control. The frozen embryos were thawed by allowing the straws to stand in air for 5 to 10 sec and then immersing them in a 30 degrees C water bath. Embryos frozen-thawed in the presence of PG or EG were nonsurgically transferred into the uterine horn without diluting the cryoprotectant. Embryos frozen-thawed in the presence of GLY were nonsurgically transferred after removing GLY either by the stepwise method (GLY-I) or by in situ dilution with 0.3 M sucrose solution (GLY-II). A total of 1,273 (PG: 400, EG: 418, GLY-I: 177, GLY-II; 278) frozen-thawed embryos was transferred into recipients, yielding 545 pregnancies (overall: 42.8%, PG: 36.0%, EG; 44.7%, GLY-I; 48.6%, GLY-II; 46.0%). The pregnancy rate with PG was significantly lower than that with EG or GLY-II (P < 0.05). The pregnancy rate was affected by the type of cryoprotectant, the region where the embryo transfer program was carried out, the developmental stage of the embryos, the parity of the recipients, and corpus luteum (CL) quality of the recipients. There were no differences in rates of abortion and stillbirth among the 3 cryoprotectants. The present study demonstrates that EG can be effectively used as a cryoprotectant for freezing and direct transfer of bovine embryos, and that the direct transfer method is applicable under on-farm conditions.  相似文献   

5.
Xiao ZZ  Zhang LL  Xu XZ  Liu QH  Li J  Ma DY  Xu SH  Xue YP  Xue QZ 《Theriogenology》2008,70(7):1086-1092
The objectives were to investigate the effect of cryoprotectants on the hatching rate of red seabream embryos. Heart-beat embryos were immersed in: five permeable cryoprotectants, dimethyl sulfoxide (DMSO), glycerol (Gly), methanol (MeOH), 1,2-propylene glycol (PG), and ethylene glycol (EG), in concentrations of 5-30% for 10, 30, or 60min; and two non-permeable cryoprotectants: polyvinylpyrrolidone (PVP), and sucrose (in concentrations of 5-20% for 10 or 30min). The embryos were then washed and incubated in filtered seawater until hatching occurred. The hatching rate of the embryos treated with permeable cryoprotectants decreased (P<0.05) with increased concentration and duration of exposure. In addition, PG was the least toxic permeable cryoprotectant, followed by DMSO and EG, whereas Gly and MeOH were the most toxic. At a concentration of 15% and 30min exposure, the hatching rate of the embryos immersed in PG was 93.3+/-7.0% (mean+/-S.D.), however, in DMSO, EG, Gly, and MeOH, it was 82.7+/-10.4, 22.0+/-5.7, 0.0+/-0.0, and 0.0+/-0.0%, respectively. Hatching rate of embryos treated with PVP decreased (P<0.05) with the increase of concentration and exposure time, whereas for embryos treated with sucrose, there was no significant decrease in comparison with the control at the concentrations used.  相似文献   

6.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

7.
A successful cryopreservation procedure for sperm must guarantee recovery of the morphological and functional characteristics of the cells following thawing so that preserved semen can to be used comparably with non-preserved semen. The aim of this work was to identify a species-specific freezing protocol for sea bass (Dicentrarchus labrax) spermatozoa by optimising all the stages in the cryopreservation procedure. In the first stage of the experiments, the cryoprotectants and the relative concentrations that had the least toxic effect on motility at room temperature were selected. The capacity of the selected cryoprotectant substances was then assessed in freezing tests as follows: dimethyl sulfoxide (Me(2)SO) 5% and 7%, ethylene glycol (EG) 7% and 10%, propylene glycol (PG) 7% and 10%. The cryoprotectant that gave the best results in this second stage of the experiments was EG 10%, and this was then used for the optimisation of the different stages in the freezing procedure: two different times of adaptation to the cryoprotectant were tested (15min and 6h), as well as the effects of adding an energy substrate (1.25mM sodium pyruvate) to assess its possible use as an energy source. Lastly, using the extender (diluent+Na-pyruvate+EG10%) and the adaptation procedure (6h at 0-2 degrees C) that had given the best results in the preceding stages of the experiments, four cooling rates were tested: 10, 12, 15, 24 degrees C/min. It was shown that the semen that was diluted immediately after collection in extender that contained the cryoprotectant (EG 10%), was equilibrated for 6h at 0-2 degrees C and then cooled at a rate of 15 degrees C/min, showed motility on thawing comparable to that of fresh semen (P=0.045).  相似文献   

8.
Two studies were conducted to evaluate the influence of cryoprotectant, cooling rate, container and cryopreservation procedure on the post-thaw viability of sheep embryos. In Study 1, late morula- to blastocyst-stage embryos were exposed to 1 of 10 cryoprotectant (1.5 M, glycerol vs propylene glycol)-plunge temperature treatments. Embryos were placed in glass ampules and cooled at 1 degrees C/min to -5 degrees C, seeded and further cooled at 0.3 degrees C/min to -15, -20, -25, -30 and -35 degrees C before rapid cooling by direct placement in liquid nitrogen (LN(2)). Post-thaw embryo viability was improved (P<0.01) when embryos were cooled to at least -30 degrees C before LN(2) plunging. Although there were no overt differences in embryo viability between cryoprotectant treatments (each resulted in live offspring after embryo transfer), there was a lower (P<0.01) incidence of zona pellucida damage using propylene glycol (4%) compared to glycerol (40%). In Study 2, embryos were equilibrated in 1.5 M propylene glycol or glycerol or a vitrification solution (VS3a). Embryos treated in propylene glycol or glycerol were divided into ampule or one-step((R)) straw treatments, cooled to -6 degrees C at 1 degrees C/min, seeded, cooled at 0.5 degrees C/min to -35 degrees C, held for 15 minutes and then transferred to LN(2). Embryos vitrified in the highly concentrated VS3a (6.5 M glycerol + 6% bovine serum albumin) were transferred from room air to LN(2) vapor, and then stored in LN(2). Propylene glycol- and glycerol-treated embryos in straws experienced lower (P<0.05) degeneration rates (27%) and yielded more (P<0.05) hatched blastocysts (73 and 60%, respectively) at 48 hours of culture and more (P<0.05) trophoblastic outgrowths (67 and 53%, respectively) after 1 week than vitrified embryos (47, 40 and 20%, respectively). In vitro development rate for VS3a-treated embryos was similar (P>0.10) to that of ampule controls, which had fewer (P<0.05) expanded blastocysts compared to similar straw treatments. Live offspring were produced from embryos cryopreserved by each straw treatment (propylene glycol, 3 of 7; glycerol, 1 of 7; VS3a, 2 of 7). In summary, freeze-preservation of sheep embryos was more effective in one-step straws than glass ampules and propylene glycol tended to be the optimum cryoprotectant. Furthermore, these findings demonstrate, for the first time, the biological competence of sheep embryos cryopreserved using the simple and rapid procedure of vitrification.  相似文献   

9.
The ability of embryos to successfully survive cryopreservation is dependent on both morphological and developmental characteristics. Domestic cat oocytes matured in vitro exhibit alterations in nuclear and cytoplasmic maturation that may affect developmental competence, particularly after cryopreservation. In Experiment 1, we evaluated the developmental competence of in vitro produced (IVM/IVF) cat embryos after cryopreservation on Days 2, 4 or 5 of IVC. In Experiment 2, in vivo viability was examined by transfer of cryopreserved embryos into recipient queens. Oocytes recovered from minced ovaries were cultured in TCM-199 with hCG/eCG and EGF at 38 degrees C in 5% O(2), 5% CO(2), 90% N(2) for 24h. In Experiment 1, after IVM/IVF, on Day 2 (n=56), Day 4 (n=48) and Day 5 (n=42) of IVC, embryos were equilibrated for 10 min at 22 degrees C in HEPES (15m M) Tyrode's (HeTy) with 1.4M propylene glycol (PG), 0.125 M sucrose (S), 10% dextran and 10% FBS, loaded into 0.25 ml straws, cooled at 2.0 degrees C/min to -6.0 degrees C and held for 10 min. After seeding, cooling resumed at 0.3 degrees C/min to -30 degrees C and after a 10 min hold, straws were plunged into liquid nitrogen (LN(2)). Straws were thawed in air for 2 min and cryoprotectant was removed by a five-step rinse consisting of 3 min each in HeTY with 0.95 M PG/0.25 M S; 0.95 M PG/0.125 M S; 0.45 M PG/0.125 M S; 0 PG/0.125 M S; 0 PG/0.0625 M S. Contemporary IVM/IVF embryos were used as nonfrozen controls (Day 2, n=14; Day 4, n=26; Day 5, n=35). After 8 days of IVC, the number of embryos developing to blastocysts was recorded and blastocyst cell numbers were counted after staining with Hoechst 33342. In Experiment 1, developmental stage did not affect the survival rate after thawing (Day 2=79%, Day 4=90%, Day 5=98%) and was not different from that of controls (Day 2=89%, Day 4=88%, Day 5=96%). Blastocyst development was similar among days both after cryopreservation (Day 2=59%, Day 4=54%, Day 5=63%) and in controls (Day 2=55%, Day 4=54%, Day 5=58%). Mean (+/-S.D.) cell number of blastocysts was slightly lower (NS) in cryopreserved embryos (Day 2=152+/-19, Day 4=124+/-20, Day 5=121+/-24) than in controls (Day 2=141+/-25, Day 4=169+/-21, Day 5=172+/-19). In Experiment 2, embryos frozen on Day 2 (n=68), Day 4 (n=49) or Day 5 (n=73) were thawed and cultured for 3, 1, or 0 days before transfer by laparotomy to 5 (mean=12.6+/-2.4), 4 (mean=12.2+/-3.7) and 6 (mean=12.0+/-1.6) recipients, respectively. Four recipients were pregnant on Day 21; two from embryos frozen on Day 4 and two from Day 5. Two live kittens were born at 66 days, a third kitten died during parturition at 64 days and a fourth pregnancy aborted by Day 45. In summary, we have shown that a controlled rate cryopreservation technique can be successfully applied to cat embryos produced by IVM/IVF. In vitro development to the blastocyst stage was not affected by the age of embryos at cryopreservation. The births of live kittens after ET of cryopreserved embryos is additional validation of progress toward applying assisted reproductive technology to preservation of endangered felids.  相似文献   

10.
Semen cryopreservation of small abalone (Haliotis diversicolor supertexa)   总被引:7,自引:0,他引:7  
Gwo JC  Chen CW  Cheng HY 《Theriogenology》2002,58(8):1563-1578
Methods for cryopreserving spermatozoa and maximizing fertilization rate in Taiwan small abalone, Haliotis diversicolor supertexa, were developed. The gametes (spermatozoa and eggs) of small abalone were viable 3 h post-spawning, with fertilization, and development rate decreasing with time. A minimum of 10(2) cell/ml sperm concentration and a contact time of 2 min between gametes is recommended for artificial insemination of small abalone eggs. Eight cryoprotectants, dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), ethylene glycol (EG), propylene glycol (PG), butylene glycol (BG), polyethylene glycol, glycerol and methanol, were tested at concentrations between 5 and 25% to evaluate their effect on motility of spermatozoa exposed to cryoprotectant for up to 60 min at 25 degrees C before freezing. The least toxic cryoprotectant, 10% DMSO, was added to artificial seawater (ASW) to formulate the extender for freezing. Semen was diluted 1:1 with the extender, inserted into 1.5 ml microtubes and frozen using a cooling rate between -3.5 and -20 degrees C/min to various transition temperatures (0, -30, -60, -90 and -120 degrees C), followed by transfer and storage in liquid nitrogen (-196 degrees C). The microtubes were thawed from +45 to +145 degrees C/min. Spermatozoa, cooled to -90 degrees C at a cooling rate of -12 or -15 degrees C/min and then immersed in liquid nitrogen, had the best post-thaw motility. Post-thaw sperm motility was markedly reduced compared to fresh sperm. More frozen-thawed spermatozoa are required to achieve fertilization rates comparable to those achieved using fresh spermatozoa.  相似文献   

11.
This study examined the effects of adding a macromolecule, polyvinylpyrrolidone (10% PVP) and a sugar (0.3 M trehalose) to vitrification solutions (VS) containing either one (40% ethylene glycol [EG], two (25% EG+25% DMSO) or three (20% EG+20% DMSO+10% 1, 3-butanediol [BD]) permeable cryoprotectants on the survival and hatching of IVP bovine embryos, following vitrification, warming and in-straw cryoprotectant dilution. Grade 1 and 2 compact morulae and blastocysts were selected on Day 7 (Day 0=IVF) of culture in SOFaaBSA and equilibrated for 10 min at room temperature in 10% EG. Following exposure, for up to 1 min at 4 degrees C, to one of the above VS (with or without PVP+trehalose), the embryos were loaded into straws and immersed in liquid nitrogen. Following warming and in-straw cryoprotectant dilution, the embryos were cultured for 48 h to assess hatching. There was no effect of VS on the survival of embryos after 24 h, however fewer compact morulae than blastocysts survived after 24 h (24% vs. 75%; P<0.001) or hatched after 48 h (15% vs. 59%; P<0.001). When blastocysts only were considered, an interaction between VS and additional PVP+trehalose was also observed (P<0.01). Hatching was reduced when they were added to 25% EG+25% DMSO (70% vs. 45%) but was not affected for either 40% EG (44 and 49%) or to 20% EG+20% DMSO+10% BD (72 and 72%). Pregnancy rates (Day 90 ultrasound) of recipients that were transferred either two non-vitrified or two vitrified (20% EG+20% DMSO+10% BD) blastocysts, did not differ (3/6 [50%] and 11/20 [55%]). However, significantly (P<0.02) fewer recipients that received compact morulae maintained pregnancy to Day 90 although this was not affected by vitrification (fresh vs. vitrified; 1/5 [20%] vs. 3/18 [17]). These data demonstrate that a VS comprising three cryoprotectants, rather than one, enables more embryos to hatch during post-thaw culture and that the survival, following direct transfer of these vitrified embryos, is not different to non-vitrified embryos.  相似文献   

12.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

13.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

14.
Studies on cryopreservation of Cryptosporidium parvum   总被引:5,自引:0,他引:5  
Neonatal BALB/c mice received oocysts or sporozoites of Cryptosporidium parvum pretreated by a variety of cryopreservation protocols. Histologic sections of infected and control mice were examined to determine if pretreated organisms established infection in the intestine. Sporozoites were inoculated rectally, oocysts orally. Freshly excysted sporozoites were frozen in Hanks' balanced salt solution (HBSS) containing dimethylsulfoxide (DMSO) or glycerol at concentrations of 5%, 10%, or 15% at cooling rates of -1 C and -10 C per min. Other sporozoites were frozen to -70 C in the absence of cryoprotectant without controlled reduction of temperature, others placed in HBSS with 10% DMSO but not subjected to freezing, whereas others were placed in vitrification media containing 5.5 M propylene glycol, 6.5 M glycerol, or 8 M ethylene glycol for 1 min before resuspension in fresh HBSS and inoculation into mice. Intact oocysts were frozen without controlled reduction of temperature directly to -70 C in HBSS containing no cryoprotectant or in HBSS that contained 10% DMSO. Others were cooled at -0.3 C per min from 4 C to -70 C in HBSS with 5% or 10% DMSO. Still others were cooled at a rate of -1 C per min until reaching -40 C and then cooled at -10 C per min until reaching -70 C in HBSS with 7.5% DMSO. Oocysts and sporozoites not exposed to cryoprotectants were inoculated into mice orally and rectally, respectively, for control purposes. Only unfrozen oocysts and sporozoites not exposed to cryoprotectant, and some of the unfrozen oocysts and sporozoites exposed to 10% DMSO, successfully established infections in mice.  相似文献   

15.
Nucleation temperatures of intraembryonic water and cryoprotectant penetration in zebrafish embryos were studied using differential scanning calorimetry. The effects of embryo developmental stage, dechorionation, partial removal of yolk, cooling rate, and cryoprotectant treatment on the temperatures of intraembryonic freezing were investigated. Embryo stages were found to have a significant effect on the nucleation temperatures of intact embryos. Freeze onset temperatures of -11.9 +/- 1.5, -15.6 +/- 0.3, and -20.5 +/- 0.1 degrees C were obtained for intact embryos at 6-somite, prim-6, and high-pec stages, respectively. After dechorionation, the freeze onset temperatures of intraembryonic water shifted to significantly lower temperatures, being -23.5 +/- 0.8, -18.7 +/- 0.7, -24.9 +/- 0.8 degrees C for 6-somite, prim-6, and high-pec stages, respectively. Yolk-reduced high-pec stage embryos showed significantly lower nucleation temperatures with an average onset at -27.9 +/- 0.4 degrees C. The effect of cryoprotectant treatment on the nucleation temperatures of intraembryonic water varies among different embryo stages and different cryoprotectants. Thirty-minute treatment with 2 M methanol significantly decreased the nucleation temperatures of dechorionated 6-somite embryos whilst no temperature decrease was observed for prim-6 or yolk-reduced high-pec embryos. Thirty-minute exposure to 1 M propylene glycol did not significantly affect the nucleation temperatures of dechorionated 6-somite, prim-6, or yolk-reduced high-pec embryos. In order to increase the permeability of embryos to cryoprotectants, the yolk sacs of dechorionated embryos at 6-somite or prim-6 embryos were punctured with a sharp micro-needle before exposure to cryoprotectants. The punctured prim-6 embryos showed significantly lower temperatures of intraembryonic freezing after 30 min of exposure to 2 M methanol following the multi-punctures. The nucleation temperatures of punctured 6-somite or prim-6 embryos were also decreased significantly after exposure to 1 M propylene glycol for 30 min. These results suggested that in intact embryos, intraembryonic freezing appeared to be seeded by the external ice in the perivitelline fluid and that in dechorionated embryos (in the absence of external water) intraembryonic freezing was more likely a consequence of heterogeneous nucleation. Methanol was demonstrated to show a limited degree of penetration into prim-6 stage embryos, but it did not penetrate later-stage embryos such as prim-6 and yolk-reduced high-pec. No propylene glycol permeation was observed for embryos at all stages. However, multi-punctures of yolk resulted in the permeation of both cryoprotectants into prim-6 embryos and propylene glycol permeation into 6-somite embryos. These findings may have important implications in overcoming the problem associated with the low membrane permeability of zebrafish embryos to cryoprotectants.  相似文献   

16.
New rat models are being developed at an exponential rate, making improved methods to cryopreserve rat embryos extremely important. However, cryopreservation of rat embryos has proven to be difficult and expensive. In this study, a series of experiments was performed to characterize the fundamental cryobiology of rat fertilized 1-cell embryos (zygotes) and to investigate the effects of different cryoprotective agents (CPAs) and two different plunging temperatures (T(p)) on post-thaw survival of embryos from three genetic backgrounds. In the initial experiments, information on the fundamental cryobiology of rat zygotes was determined, including 1) the hydraulic conductivity in the presence of CPAs (L(p)), 2) the cryoprotectant permeability (P(CPA)), 3) the reflection coefficient (sigma), and 4) the activation energies for these parameters. P(CPA) values were determined for the CPAs, ethylene glycol (EG), dimethyl sulfoxide (DMSO), and propylene glycol (PG). Using this information, a cryopreservation method was developed and the cryosurvival and fetal development of Sprague-Dawley zygotes cryopreserved in either EG, DMSO, or PG and plunged at either -30 or -80 degrees C, were assessed. The highest fetal developmental rates were obtained using a T(p) of -30 degrees C and EG (61.2% +/- 2.4%), which was not different (P > 0.05) from nonfrozen control zygotes (54.6% +/- 3.0%).  相似文献   

17.
Survival of IVF-derived bovine embryos of different ages and stages of development, produced in 2 different co-culture systems and frozen in 2 different cryoprotectants, was investigated. In vitro-derived bovine embryos (n = 5,525) were utilized to study survival following exposure to cryoprotectants and after freezing. Survival of the frozen embryos was based on blastocyst re-expansion 24 h and hatching 72 h after thawing. There was no difference in survival when embryos were exposed to either glycerol (Gly) or ethylene glycol (EG) for 10 or 40 min with the cryoprotectant diluted with or without freezing. In 2 of 3 experiments in which a comparison was possible, more blastocysts frozen in 1.4 M glycerol than in 1.5 M ethylene glycol survived. Addition of 0.25 M sucrose to 1.5 M ethylene glycol in the freezing solution did not improve embryo survival. More blastocysts frozen on Day 7 of in vitro culture survived than those frozen on Day 6 or Day 8. On Days 6, 7 and 8, embryos in the most advanced stage of development survived better than those at less advanced stages. Post-thaw survival did not differ for embryos produced in co-culture with Buffalo Rat Liver (BRL) cells with either Menezo B2 Medium or Tissue Culture Medium 199 and frozen in 1.4 M glycerol.  相似文献   

18.
A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P < 0.05). The same indices were superior following vitrification-thawing of the blastocysts in 40% EG + 20% PVP than it was in 40% EG + 10% PVP (76.1 +/- 5.5% vs 63.7 +/- 1.8%; P < 0.05; and 61.6 +/- 6.0% vs 70.5 +/- 4.7%; P < 0.01, respectively). Exposure to the vitrification solution (40% EG + 20% PVP) at higher temperatures (37.5 degrees C vs 4 degrees C) reduced both survival and hatching rates (45.8 +/- 6.9% vs 83.9 +/- 4.4% and 41.5 +/- 1.8% vs 64.0 +/- 4.7%, respectively; P < 0.001). These results indicate that blastocysts vitrified after prefreezing the diluent portions of the straws do favor developmental competence of in vitro produced embryos.  相似文献   

19.
Survival of oocytes recovered from vitrified sheep ovarian tissues   总被引:11,自引:0,他引:11  
The objective of this work was to develop an effective vitrification technique for cryopreserving oocytes in sheep ovarian tissues. Ovaries were surgically recovered from 15 pubertal ewes and the ovarian cortex was cut into sections. Ovarian tissues were placed in equilibration medium consisting of 4% (v/v) ethylene glycol (EG) and 20% (v/v) FBS in TCM-199 on ice for 30 min and transferred to vitrification solution (35% EG, 5% polyvinylpyrrolidone, 0.4M trehalose and 20% FBS in TCM-199) for 5 min. Ovarian tissues were vitrified by dropping the tissue on the surface of a steel cube cooled by liquid nitrogen. Cumulus-enclosed oocyte complexes (COC) were also collected and vitrified following the procedure used for ovarian tissues. After 2-3 weeks of storage in liquid nitrogen, ovarian tissues and COC were thawed at 37 degrees C in 0.3M trehalose and COC in ovarian tissues were mechanically and enzymatically isolated. Vitrified COC and freshly collected COC were washed twice in maturation medium (TCM-199 supplemented with 0.255 mM pyruvate and 10% heat-treated estrus cow serum) and cultured in 50 microl drops of maturation medium under paraffin oil for 23-25h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. After culture, cumulus cells were removed by hyaluronidase treatment and vortexing and oocytes were fixed and stained. No significant differences were observed between vitrified oocytes, oocytes recovered from vitrified ovarian tissues and non-vitrified control oocytes in the percentage of oocytes with acceptable staining per total number of oocytes fixed or with visible chromatin per total number of oocytes with acceptable staining. However, fewer (P<0.05) oocytes obtained from vitrified ovarian tissues (70%) reached metaphase II compared to vitrified oocytes (88%) and non-vitrified control oocytes (90%). In contrast, when oocytes with at least 3-5 layers of cumulus cells were considered from each of the three groups, no differences (P>0.05) were observed due to treatment in the percentages of oocytes developing to metaphase II. These results demonstrate that sheep oocytes can be successfully cryopreserved by vitrification of ovarian tissues and exhibit in vitro maturation rates similar to that of vitrified and non-vitrified oocytes.  相似文献   

20.
The aim of this research was to optimise protocols for freezing spermatozoa of the Pacific oyster. All the phases of the cryopreservation procedure (choice of cryoprotectant, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa to restore on thawing the morphological and physiological characteristics of fresh semen. The choice of type and concentration of cryoprotectant in which semen is incubated before freezing is fundamental for a successful cryopreservation: the cryoprotectants (dimethylsulfoxide--Me(2)SO, ethylene glycol--EG, propylene glycol-PG, and glycerol in concentrations between 5 and 15%) were tested for their toxicity on the semen exposed up to 30 min at +26 degrees C (room temperature) by evaluating its ability to fertilise and the embryo development to the regular D larval stage. The best cryoprotectants, Me(2)SO, EG, and PG 5, 10, and 15% respectively, were used for the pre-cooling (adaptation/cooling) tests. Two different adaptation/cooling procedures were tested: (A) from +26 degrees C to 0-2 degrees C (2.6 degrees C/min) and (B) at +26 degrees C for 15 min. Lastly, using the cryoprotectants and the adaptation procedure (B) that had given the best results in the preceding stages of the experiment, four cooling rates were tested: 6, 11, 16, and 21 degrees C/min. It was seen that the semen that was incubated with EG 10%, adapted at +26 degrees C for 15 min, and then cooled at a rate of 6 degrees C/min showed a percentage of regular D larvae on thawing comparable to that of fresh semen (p > 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号