首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Cdc13p contains two clusters of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here we demonstrated that the telomerase recruitment domain of Cdc13p is phosphorylated by Mec1p and Tel1p. Gel analysis showed that Cdc13p contains a Mec1/Tel1-dependent post-translational modification. Using an immunoprecipitate (IP)-kinase assay, we showed that Mec1p phosphorylates Cdc13p on serine 225, 249, 255 and 306, and Tel1p phosphorylates Cdc13p on serine 225, 249 and 255 in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13p SQ motifs phosphorylated by Mec1p and Tel1p caused multiple telomere and growth defects. In addition, normal telomere length and growth could be restored by expressing a Cdc13–Est1p hybrid protein. These results demonstrate the telomerase recruitment domain of Cdc13p as an important new telomere-specific target of Mec1p/Tel1p.  相似文献   

2.
In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mutations in XRS2, RAD50, or MRE11 (encoding members of a trimeric complex). Xrs2p and Mre11p are phosphorylated in a Tel1p-dependent manner in response to DNA damage [Genes Dev. 15 (2001) 2238; Mol. Cell 7 (2001) 1255]. We found that Xrs2p, but not Mre11p or Rad50p, is efficiently phosphorylated in vitro by immunopreciptated Tel1p. Strains with mutations eliminating all SQ and TQ motifs in Xrs2p (preferred targets of the ATM kinase family) had wild-type length telomeres and wild-type sensitivity to DNA damaging agents. We also showed that Rfa2p (a subunit of RPA) and the Dun1p checkpoint kinase, which are required for DNA damage repair and which are phosphorylated in response to DNA damage in vivo, are in vitro substrates of the Tel1p and Mec1p kinases. In addition, Dun1p substrates with no SQ or TQ motifs are phosphorylated by Mec1p in vitro very inefficiently, but retain most of their ability to be phosphorylated by Tel1p. We demonstrated that null alleles of DUN1 and certain mutant alleles of RFA2 result in short telomeres. As observed with Xrs2p, however, strains with mutations of DUN1 or RFA2 that eliminate SQ motifs have no effect on telomere length or DNA damage sensitivity.  相似文献   

3.
ATM/ATR-like protein kinases play central roles in the maintenance of genome stability and phosphorylate numerous substrates in response to DNA damage, preferentially on SQ or TQ motifs. ATM/ATR substrates often contain several closely spaced SQ/TQ motifs in regions that have been termed SQ/TQ cluster domains (SCDs). SCDs are now considered a structural hallmark of DNA-damage-response proteins. Mutational analyses of a number of SCD-containing proteins indicate that multisite phosphorylation of SQ/TQ motifs is required for normal DNA-damage responses, most commonly by mediating protein-protein interactions in the formation of DNA-damage-induced complexes. SCD sequences are highly diverse and these domains may be largely unfolded in their native state rather than adopting a common three-dimensional fold. Structural disorder of SCDs could be advantageous for efficient phosphorylation by ATM/ATR kinases and also enable them to be molded into distinct conformations to facilitate flexible interactions with multiple binding partners.  相似文献   

4.
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 subunit of the INO80 complex is phosphorylated by the Mec1/Tel1 kinases during exposure to DNA-damaging agents. Mutation of Ies4's phosphorylation sites does not significantly affect DNA repair processes, but does influence DNA damage checkpoint responses. Additionally, ies4 phosphorylation mutants are linked to the function of checkpoint regulators, such as the replication checkpoint factors Tof1 and Rad53. These findings establish a chromatin remodeling complex as a functional component in the Mec1/Tel1 DNA damage signaling pathway that modulates checkpoint responses and suggest that posttranslational modification of chromatin remodeling complexes regulates their involvement in distinct processes.  相似文献   

5.
The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G(2)/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G(2)/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways.  相似文献   

6.
Rad9 is required for the activation of DNA damage checkpoint pathways in budding yeast. Rad9 is phosphorylated after DNA damage in a Mec1- and Tel1-dependent manner and subsequently interacts with Rad53. This Rad9-Rad53 interaction has been suggested to trigger the activation and phosphorylation of Rad53. Here we show that Mec1 controls the Rad9 accumulation at double-strand breaks (DSBs). Rad9 was phosphorylated after DSB induction and associated with DSBs. However, its phosphorylation and association with DSBs were significantly decreased in cells carrying a mec1Delta or kinase-negative mec1 mutation. Mec1 phosphorylated the S/TQ motifs of Rad9 in vitro, the same motifs that are phosphorylated after DNA damage in vivo. In addition, multiple mutations in the Rad9 S/TQ motifs resulted in its defective association with DSBs. Phosphorylation of Rad9 was partially defective in cells carrying a weak mec1 allele (mec1-81), whereas its association with DSBs occurred efficiently in the mec1-81 mutants, as found in wild-type cells. However, the Rad9-Rad53 interaction after DSB induction was significantly decreased in mec1-81 mutants, as it was in mec1Delta mutants. Deletion mutation in RAD53 did not affect the association of Rad9 with DSBs. Our results suggest that Mec1 promotes association of Rad9 with sites of DNA damage, thereby leading to full phosphorylation of Rad9 and its interaction with Rad53.  相似文献   

7.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.  相似文献   

8.
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia Rad3-related (ATR) and the Mre11/Rad50/Nbs1 complex ensure genome stability in response to DNA damage. However, their essential role in DNA metabolism remains unknown. Here we show that ATM and ATR prevent accumulation of DNA double-strand breaks (DSBs) during chromosomal replication. Replicating chromosomes accumulate DSBs in Xenopus laevis egg extracts depleted of ATM and ATR. Addition of ATM and ATR proteins to depleted extracts prevents DSB accumulation by promoting restart of collapsed replication forks that arise during DNA replication. We show that collapsed forks maintain MCM complex but lose Pol epsilon, and that Pol epsilon reloading requires ATM and ATR. Replication fork restart is abolished in Mre11 depleted extracts and is restored by supplementation with recombinant human Mre11/Rad50/Nbs1 complex. Using a novel fluorescence resonance energy transfer-based technique, we demonstrate that ATM and ATR induce Mre11/Rad50/Nbs1 complex redistribution to restarting forks. This study provides direct biochemical evidence that ATM and ATR prevent accumulation of chromosomal abnormalities by promoting Mre11/Rad50/Nbs1 dependent recovery of collapsed replication forks.  相似文献   

9.
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage-signaling pathways. Human DNA topoisomerase II binding protein 1 (TopBP1) contains eight BRCT motifs and shares sequence similarity with the fission yeast Rad4/Cut5 protein and the budding yeast DPB11 protein, both of which are required for DNA damage and/or replication checkpoint controls. We report here that TopBP1 is phosphorylated in response to DNA double-strand breaks and replication blocks. TopBP1 forms nuclear foci and localizes to the sites of DNA damage or the arrested replication forks. In response to DNA strand breaks, TopBP1 phosphorylation depends on the ataxia telangiectasia mutated protein (ATM) in vivo. However, ATM-dependent phosphorylation of TopBP1 does not appear to be required for focus formation following DNA damage. Instead, focus formation relies on one of the BRCT motifs, BRCT5, in TopBP1. Antisense Morpholino oligomers against TopBP1 greatly reduced TopBP1 expression in vivo. Similar to that of ataxia telangiectasia-related protein (ATR), Chk1, or Hus1, downregulation of TopBP1 leads to reduced cell survival, probably due to increased apoptosis. Taken together, the data presented here suggest that, like its putative counterparts in yeast species, TopBP1 may be involved in DNA damage and replication checkpoint controls.  相似文献   

10.
11.
In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1 is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Delta mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Delta cells, as in mec1Delta cells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of the pie1Delta mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Delta mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.  相似文献   

12.
DNA and histone synthesis are coupled and ongoing replication is required to maintain histone gene expression. Here, we expose S phase–arrested cells to the kinase inhibitors caffeine and LY294002. This uncouples DNA replication from histone messenger RNA (mRNA) abundance, altering the efficiency of replication stress–induced histone mRNA down-regulation. Interference with caffeine-sensitive checkpoint kinases ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) does not affect histone mRNA down- regulation, which indicates that ATR/ATM alone cannot account for such coupling. LY294002 potentiates caffeine's ability to uncouple histone mRNA stabilization from replication only in cells containing functional DNA-activated protein kinase (DNA-PK), which indicates that DNA-PK is the target of LY294002. DNA-PK is activated during replication stress and DNA-PK signaling is enhanced when ATR/ATM signaling is abrogated. Histone mRNA decay does not require Chk1/Chk2. Replication stress induces phosphorylation of UPF1 but not hairpin-binding protein/stem-loop binding protein at S/TQ sites, which are preferred substrate recognition motifs of phosphatidylinositol 3-kinase–like kinases, which indicates that histone mRNA stability may be directly controlled by ATR/ATM- and DNA-PK–mediated phosphorylation of UPF1.  相似文献   

13.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), coordinate the cellular response to DNA damage. In budding yeast, ATR homologue Mec1 plays a central role in DNA damage signaling. Mec1 interacts physically with Ddc2 and functions in the form of the Mec1-Ddc2 complex. To identify proteins interacting with the Mec1-Ddc2 complex, we performed a modified two-hybrid screen and isolated RFA1 and RFA2, genes that encode subunits of replication protein A (RPA). Using the two-hybrid system, we found that the extreme C-terminal region of Mec1 is critical for RPA binding. The C-terminal substitution mutation does not affect the Mec1-Ddc2 complex formation, but it does impair the interaction of Mec1 and Ddc2 with RPA as well as their association with DNA lesions. The C-terminal mutation also decreases Mec1 kinase activity. However, the Mec1 kinase-defect by itself does not perturb Mec1 association with sites of DNA damage. We also found that Mec1 and Ddc2 associate with sites of DNA damage in an interdependent manner. Our findings support the model in which Mec1 and Ddc2 localize to sites of DNA damage by interacting with RPA in the form of the Mec1-Ddc2 complex.  相似文献   

14.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

15.
M Qu  B Yang  L Tao  JR Yates  P Russell  MQ Dong  LL Du 《PLoS genetics》2012,8(7):e1002817
In response to DNA damage, the eukaryotic genome surveillance system activates a checkpoint kinase cascade. In the fission yeast Schizosaccharomyces pombe, checkpoint protein Crb2 is essential for DNA damage-induced activation of downstream effector kinase Chk1. The mechanism by which Crb2 mediates Chk1 activation is unknown. Here, we show that Crb2 recruits Chk1 to double-strand breaks (DSBs) through a direct physical interaction. A pair of conserved SQ/TQ motifs in Crb2, which are consensus phosphorylation sites of upstream kinase Rad3, is required for Chk1 recruitment and activation. Mutating both of these motifs renders Crb2 defective in activating Chk1. Tethering Crb2 and Chk1 together can rescue the SQ/TQ mutations, suggesting that the main function of these phosphorylation sites is promoting interactions between Crb2 and Chk1. A 19-amino-acid peptide containing these SQ/TQ motifs is sufficient for Chk1 binding in vitro when one of the motifs is phosphorylated. Remarkably, the same peptide, when tethered to DSBs by fusing with either recombination protein Rad22/Rad52 or multi-functional scaffolding protein Rad4/Cut5, can rescue the checkpoint defect of crb2Δ. The Rad22 fusion can even bypass the need for Rad9-Rad1-Hus1 (9-1-1) complex in checkpoint activation. These results suggest that the main role of Crb2 and 9-1-1 in DNA damage checkpoint signaling is recruiting Chk1 to sites of DNA lesions.  相似文献   

16.
The DNA damage checkpoint signaling pathway is a highly conserved surveillance mechanism that ensures genome integrity by sequential activation of protein kinase cascades. In mammals, the main pathway is orchestrated by two central sensor kinases, ATM and ATR, that are activated in response to DNA damage and DNA replication stress. Patients lacking functional ATM or ATR suffer from ataxia-telangiectasia (A-T) or Seckel syndrome, respectively, with pleiotropic degenerative phenotypes. In addition to DNA strand breaks, ATM and ATR also respond to oxidative DNA damage and reactive oxygen species (ROS), suggesting an unconventional function as regulators of intracellular redox status. Here, we summarize the multiple roles of ATM and ATR, and of their orthologs in Saccharomyces cerevisiae, Tel1 and Mec1, in DNA damage checkpoint signaling and the oxidative stress response, and discuss emerging ideas regarding the possible mechanisms underlying the elaborate crosstalk between those pathways. This review may provide new insights into the integrated cellular strategies responsible for maintaining genome stability in eukaryotes with a focus on the yeast model organism.  相似文献   

17.
The essential, conserved Tel2 protein plays a role in the response to DNA damage and replication stress in a wide range of eukaryotes. Tel2 interacts physically with multiple members of the PI3-kinase related protein kinase (PIKK) family in mammalian cells and fission yeast. In mammalian cells, loss of Tel2 leads to destabilization of PIKKs. Our previous work in the yeast Saccharomyces cerevisiae showed that Tel2 interacts with the PIKK Tel1 (yeast ATM kinase), and that this interaction is abrogated by the only known non-lethal TEL2 mutation in S. cerevisiae, tel2-1. We showed that this mutation specifically disrupts the function of Tel1 and not the function of the closely related protein Mec1 (yeast ATR kinase) in DNA damage responses. Here we show that Tel2 and Mec1 interact in S. cerevisiae, and that surprisingly, this physical interaction is also disrupted by the tel2-1 mutation. Although the tel2-1 mutation leads to moderately lower Mec1 levels, the ability of Mec1 to localize to a site of DNA damage and to function in DNA damage signaling remains intact. These results suggest that the model of Tel2 as solely a global regulator of PIKK stability is insufficient. Rather, Tel2 can specifically and differentially regulate the function of individual PIKKs.  相似文献   

18.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.  相似文献   

19.
DNA replication checkpoint is activated in response to replication stresses. It maintains the integrity of stalled replication forks and prevents premature segregation of largely unreplicated chromosomes. In budding yeast, Mec1 and Rad53 kinases (homologous to mammalian ATM/ATR and Chk2 kinases, respectively) are the main effectors of this checkpoint control. Using a yeast based screen, we have identified acompound (named here ENA) which inhibits DNA replication and activatesMec1/Rad53 checkpoint. A brief exposure to this compound stops fork progression at or near replication origin and renders the forks incompetent to resume replication despite the presence of a functional checkpoint. ENA also inhibits DNA synthesis in mammalian cells leading to the activation of ATM/ATR pathway and the induction of apoptosis in a p53 independent manner. Interestingly, ENA acts as an effective antiproliferative agent against a subset of cancer cell lines and as an anti-tumor agent against human xenografts in mice. Thus, ENA is a potent cell cycle inhibitor with conceivable therapeutic potential.  相似文献   

20.
The yeast checkpoint protein kinase Mec1, the ortholog of human ATR, is the essential upstream regulator of the cell cycle checkpoint in response to DNA damage and to stalling of DNA replication forks. The activity of Mec1/ATR is not directly regulated by the DNA substrates that signal checkpoint activation. Rather the signal appears to be transduced to Mec1 by factors that interact with the signaling DNA substrates. One of these factors, the DNA damage checkpoint clamp Rad17-Mec3-Ddc1 (human 9-1-1) is loaded onto gapped DNA resulting from the partial repair of DNA damage, and the Ddc1 subunit of this complex activates Mec1. In vertebrate cells, the TopBP1 protein (Cut5 in S. pombe and Dpb11 in S. cervisiae) that is also required for establishment of the replication fork, functions during replication fork dysfunction to activate ATR. Both mechanisms of activation generally upregulate the kinase activity towards all downstream targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号