首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   

3.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

4.
Transfer RNAs of Escherichia coli were separated by two-dimensional polyacrylamide gel electrophoresis, and the relative abundance of each of the 26 known tRNAs thus separated was measured on the basis of molecular numbers in cells. Based on this relative abundance, the distributions of cognate codons in E. coli genes (lacI, rpA, asnA, recA, lpp and four ribosomal protein genes) and in coliphage (MS2, φX174 and λ) genes were examined. A strong positive correlation between the tRNA abundance and the choice of codons, among both synonymous codons and those corresponding to different amino acids, was found for all E. coli protein genes that had been sequenced completely. However, the correlation was less significant for the phage genes. The relationship between tRNA abundance and its usage (namely anticodon usage) was examined by regression analysis. The degree of the relationship found for individual E. coli genes differed from gene to gene: those of r-protein genes and recA were higher than those of trpA, lacI and asnA. The dependent relationship of tRNA usage on its content for the first two genes seems to be greater than that expected from the proportional relationship between the two variables; i.e. these genes selectively use codons corresponding to major tRNAs but nearly avoid using those of minor tRNAs.  相似文献   

5.
Jae Hoon Bahn  Gyunghee Lee    Jae H. Park 《Genetics》2009,181(3):965-975
PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.ASYMMETRIC cell division, a process in which a mother cell divides in two different daughter cells, is a fundamental mechanism to achieve cell diversity during development. We use the early embryo of Caenorhabditis elegans as a model system to study asymmetric cell division. The C. elegans one-cell embryo divides asymmetrically along its anteroposterior axis, generating two cells of different sizes and fates: the larger anterior daughter cell will generate somatic tissues while the smaller posterior daughter cell will generate the germline (Sulston et al. 1983).A group of proteins called PAR proteins (partitioning defective) is required for asymmetric cell division in C. elegans (Kemphues et al. 1988). Depletion of any of the seven par genes (par-1 to -6 and pkc-3) leads to defects in asymmetric cell division and embryonic lethality (Kemphues et al. 1988; Kirby et al. 1990; Tabuse et al. 1998; Hung and Kemphues 1999; Hao et al. 2006). PAR-3 and PAR-6 are conserved proteins that contain PDZ-domains and form a complex with PKC-3 (Etemad-Moghadam et al. 1995; Izumi et al. 1998; Tabuse et al. 1998; Hung and Kemphues 1999). This complex becomes restricted to the anterior cortex of the embryo in response to spatially defined actomyosin contractions occurring in the embryo upon fertilization (Goldstein and Hird 1996; Munro et al. 2004). The posterior cortex of the embryo that becomes devoid of the anterior PAR proteins is occupied by the RING protein PAR-2 and the Ser/Thr kinase PAR-1 (Guo and Kemphues 1995; Boyd et al. 1996; Cuenca et al. 2003). Once polarized, the anterior and posterior PAR proteins mutually exclude each other from their respective cortices (Etemad-Moghadam et al. 1995; Boyd et al. 1996; Cuenca et al. 2003; Hao et al. 2006). Loss of function of the gene par-1, as opposed to loss of most other par genes, results in embryos that exhibit only subtle effects on the polarized cortical domains occupied by the other PAR proteins (Cuenca et al. 2003). However defects in this gene are associated with a more symmetric division in size, an aberrant distribution of cell fate specification markers, altered cell fates of the daughter cells of the embryo, and ultimately embryonic lethality (Kemphues et al. 1988; Guo and Kemphues 1995).PAR-1 controls asymmetric cell division and cell fate specification by regulating the localization of the two highly similar CCCH-type zinc-finger proteins MEX-5 and MEX-6 (referred to as MEX-5/6). MEX-5 and MEX-6 are 70% identical in their amino acid sequence and fulfill partially redundant functions in the embryo (Schubert et al. 2000). In wild-type animals, endogenous MEX-5 and GFP fusions of MEX-6 localize primarily to the anterior of the embryo while both proteins are evenly distributed in par-1 mutant embryos (Schubert et al. 2000; Cuenca et al. 2003). This suggests that in wild-type animals, PAR-1 acts in part by restricting MEX-5 and MEX-6 to the anterior of the embryo. The precise mechanism of this regulation is not known, but an elegant study performed for MEX-5 indicates that differential protein mobility in the anterior and posterior cytoplasm of the one-cell embryo contributes to this asymmetry (Tenlen et al. 2008). While increased mobility in the posterior of the one-cell embryo correlates with a par-1- and par-4-dependent phosphorylation on MEX-5, the kinase directly phosphorylating MEX-5 remains to be identified (Tenlen et al. 2008).Some of the phenotypes associated with loss of par-1 function are dependent on the function of mex-5 and mex-6. First, loss of function of par-1 leads to a decreased stability and aberrant localization of the posterior cell fate specification marker PIE-1, a protein that is usually inherited by the posterior daughter cell in wild-type animals and ensures the correct specification of the germline (Mello et al. 1996; Seydoux et al. 1996). This decreased stability is dependent on mex-5/6 function as PIE-1 levels are restored, albeit with symmetrical distribution, in mex-6(RNAi); mex-5(RNAi); par-1(b274) embryos (Schubert et al. 2000; Cuenca et al. 2003; Derenzo et al. 2003). Second, embryos lacking par-1 function exhibit decreased amounts of P granules in the one-cell embryo, while these markers are present in mex-6(pk440); mex-5(zu199); par-1(RNAi) embryos of comparable age (Cheeks et al. 2004). Third, in par-1(RNAi) one-cell embryos the posterior cortical domain occupied by the polarity protein PAR-2 is extended anteriorly, when compared to wild-type embryos (Cuenca et al. 2003). This anterior extension is rescued in embryos deficient for both par-1 and mex-5/6 (Cuenca et al. 2003). Taken together, these results indicate that par-1 acts in the embryo—at least in part—by regulating the localization and/or activity of the proteins MEX-5 and MEX-6. However, it remains unclear whether other proteins can modulate PAR-1 function to affect MEX-5/6 activity.To gain insight into the mechanisms of par-1 function in the embryo, we sought to identify genes that act together with par-1 during embryonic development. We performed an RNAi-based screen for genetic interactors of the temperature-sensitive allele par-1(zu310), using the embryonic lethal phenotype of this mutant as a readout. This method has proven successful in previous screens to identify genes involved in early embryonic processes (Labbé et al. 2006; O''Rourke et al. 2007). We were able to identify six genes that, upon disruption of their function, suppress the embryonic lethal phenotype of par-1 mutant embryos. One of these genes is mpk-1, the C. elegans homolog of the highly conserved MAP kinase ERK. Closer analysis subsequently showed that reduction of function of mpk-1 not only increases viability of par-1 mutant embryos, but also reverts several polarity phenotypes associated with loss of function of par-1. Our data indicate that mpk-1 antagonizes par-1 activity to regulate polarization and asymmetric cell divisions in the early embryo.  相似文献   

6.
7.
8.
9.
10.
Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.  相似文献   

11.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

12.
M Treier  C Pfeifle    D Tautz 《The EMBO journal》1989,8(5):1517-1525
We have cloned and sequenced a large portion of the hunchback (hb) locus from Drosophila virilis. Comparison with the Drosophila melanogaster hb sequence shows multiple strong homologies in the upstream and downstream regions of the gene, including most of the known functional parts. The coding sequence is highly conserved within the presumptive DNA-binding finger regions, but more diverged outside of them. The regions of high divergence are correlated with regions which are rich in short direct repeats (regions of high 'cryptic simplicity'), suggesting a significant influence of slippage-like mechanisms in the evolutionary divergence of the two genes. Staining of early D.virilis embryos with an hb antibody reveals conserved and divergent features of the spatial expression pattern at blastoderm stage. It appears that the basic expression pattern, which serves as the gap gene function of hb, is conserved, while certain secondary expression patterns, which have separate functions for the segmentation process, are partly diverged. Thus, both slippage driven mutations in the coding region, which are likely to occur at higher rates than point mutations and the evolutionary divergence of secondary expression patterns may contribute to the evolution of regulatory genes.  相似文献   

13.
14.
Monoclonal antibodies were prepared against a fraction of nuclear proteins of Drosophila melanogaster identified as tightly binding to DNA. Four of these antibodies were directed against a 19-kilodalton nuclear protein; immunofluorescence staining of the polytene chromosomes localized the antigen to the alpha, beta, and intercalary heterochromatic regions. Screening of a lambda gt11 cDNA expression library with one of the monoclonal antibodies identified a recombinant DNA phage clone that produced a fusion protein immunologically similar to the heterochromatin-associated protein. Polyclonal sera directed against the bacterial lacZ fusion protein recognized the same nuclear protein on Western blots. A full-length cDNA clone was isolated from a lambda gt10 library, and its DNA sequence was obtained. Analysis of the open reading frame revealed an 18,101-dalton protein encoded by this cDNA. Two overlapping genomic DNA clones were isolated from a Charon 4 library of D. melanogaster with the cDNA clone, and a restriction map was obtained. In situ hybridization with these probes indicated that the gene maps to a single chromosome location at 29A on the 2L chromosome. This general strategy should be effective for cloning the genes and identifying the genetic loci of chromosomal proteins which cannot be readily assayed by other means.  相似文献   

15.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

16.
17.
The chromosomal passenger complex (CPC), which is composed of conserved proteins aurora B, inner centromere protein (INCENP), survivin, and Borealin/DASRA, localizes to chromatin, kinetochores, microtubules, and the cell cortex in a cell cycle-dependent manner. The CPC is required for multiple aspects of cell division. Here we find that Drosophila melanogaster encodes two Borealin paralogues, Borealin-related (Borr) and Australin (Aust). Although Borr is a passenger in all mitotic tissues studied, it is specifically replaced by Aust for the two male meiotic divisions. We analyzed aust mutant spermatocytes to assess the effects of fully inactivating the Aust-dependent functions of the CPC. Our results indicate that Aust is required for sister chromatid cohesion, recruitment of the CPC to kinetochores, and chromosome alignment and segregation but not for meiotic histone phosphorylation or spindle formation. Furthermore, we show that the CPC is required earlier in cytokinesis than previously thought; cells lacking Aust do not initiate central spindle formation, accumulate anillin or actin at the cell equator, or undergo equatorial constriction.  相似文献   

18.
19.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

20.
Alcohol dehydrogenase (ADH) gene expression was analyzed in Drosophila melanogaster and its sibling species D. simulans. The levels of ADH activity, ADH-cross-reacting material (CRM), and ADH-mRNA were analyzed for several strains of each species, which derive from diverse geographic locations around the world. There is considerable quantitative variation in ADH activity, CRM level, and RNA level among strains within species at all developmental stages. However, the only consistent differences between the two species are in pupal RNA level and in late-adult activity and CRM level. Late-adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and CRM as do simulans flies. The regression of activity on CRM over strains is highly significant and essentially the same for each species, which means that most, if not all, of the activity difference between the species is due to a difference in concentration of the ADH protein. In contrast, there is no significant regression of CRM level on mRNA level in adults of either species; nor is there a significant difference in RNA level between species. Therefore, the difference in ADH protein concentration is not due to RNA template availability. Thus, the interspecific difference in ADH level in adults must be due either to a difference in the rate of translation of the two RNAs or to a difference in protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号