首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern taxonomy requires an analytical approach incorporating all lines of evidence into decision‐making. Such an approach can enhance both species identification and species discovery. The character‐based DNA barcode method provides a molecular data set that can be incorporated into classical taxonomic data such that the discovery of new species can be made in an analytical framework that includes multiple sources of data. We here illustrate such a corroborative framework in a dragonfly model system that permits the discovery of two new, but visually cryptic species. In the African dragonfly genus Trithemis three distinct genetic clusters can be detected which could not be identified by using classical taxonomic characters. In order to test the hypothesis of two new species, DNA‐barcodes from different sequence markers (ND1 and COI) were combined with morphological, ecological and biogeographic data sets. Phylogenetic analyses and incorporation of all data sets into a scheme called taxonomic circle highly supports the hypothesis of two new species. Our case study suggests an analytical approach to modern taxonomy that integrates data sets from different disciplines, thereby increasing the ease and reliability of both species discovery and species assignment.  相似文献   

2.
DNA 'barcoding' relies on a short fragment of mitochondrial DNA to infer identification of specimens. The method depends on genetic diversity being markedly lower within than between species. Closely related species are most likely to share genetic variation in communities where speciation rates are rapid and effective population sizes are large, such that coalescence times are long. We assessed the applicability of DNA barcoding (here the 5' half of the cytochrome c oxidase I) to a diverse community of butterflies from the upper Amazon, using a group with a well-established morphological taxonomy to serve as a reference. Only 77% of species could be accurately identified using the barcode data, a figure that dropped to 68% in species represented in the analyses by more than one geographical race and at least one congener. The use of additional mitochondrial sequence data hardly improved species identification, while a fragment of a nuclear gene resolved issues in some of the problematic species. We acknowledge the utility of barcodes when morphological characters are ambiguous or unknown, but we also recommend the addition of nuclear sequence data, and caution that species-level identification rates might be lower in the most diverse habitats of our planet.  相似文献   

3.
Spider: SPecies IDentity and Evolution in R is a new R package implementing a number of useful analyses for DNA barcoding studies and associated research into species delimitation and speciation. Included are functions essential for generating important summary statistics from DNA barcode data, assessing specimen identification efficacy, and for testing and optimizing divergence threshold limits. In terms of investigating evolutionary and taxonomic questions, techniques for assessing diagnostic nucleotides and probability of reciprocal monophyly are also provided. Additionally, a sliding window function offers opportunities to analyse information across a gene, essential for marker design in degraded DNA studies. Spider capitalizes on R's extensible ethos and offers an integrated platform ideal for the analysis of both nucleotide and morphological data. The program can be obtained from the comprehensive R archive network (CRAN, http://cran.r-project.org) and from the R-Forge package development site (http://spider.r-forge.r-project.org/).  相似文献   

4.
【目的】DNA条形码技术是近年来生物分类鉴定的研究热点之一,已成为植物检疫性昆虫鉴定的有力工具。为快速、准确地鉴定口岸截获的昆虫种类,实现"检得出、检得准、检得快"的要求,我们研发了昆虫DNA条形码试剂盒检测技术(Insect DNA barcoding identification kit)。【方法】该检测技术针对出入境植物检疫性及危险性昆虫的主要类群,选择合适的基因片段、设计引物、对目标基因进行扩增测序,找出基因片段上区分每个物种的多态位点规律,作为该物种的鉴定特征并建立数据库,应用于植物检疫性及危险性昆虫的物种鉴定。【结果】以检疫性昆虫木蠹象属Pissodes为例,确定了木蠹象属5种昆虫的多态位点规律(鉴定特征),构建了用于物种鉴定的数据库。通过比对数据库里的鉴定特征,将未知样品鉴定为榛梢木蠹象P.terminalis(相似度100%),与形态鉴定结果一致。本文介绍了检测技术的原理、方法、技术流程及应用实例,并展望了其在有害生物检测中的推广应用前景。【结论】昆虫DNA条形码试剂盒检测技术为建立标准化,准确性高的物种鉴定平台打下基础,有着良好的推广应用前景。  相似文献   

5.
Mimicry and extensive geographical subspecies polymorphism combine to make species in the ithomiine butterfly genus Mechanitis (Lepidoptera; Nymphalidae) difficult to determine. We use mitochondrial DNA (mtDNA) barcoding, nuclear sequences and amplified fragment length polymorphism (AFLP) genotyping to investigate species limits in this genus. Although earlier biosystematic studies based on morphology described only four species, mtDNA barcoding revealed eight well-differentiated haplogroups, suggesting the presence of four new putative 'cryptic species'. However, AFLP markers supported only one of these four new 'cryptic species' as biologically meaningful. We demonstrate that in this genus, deep genetic divisions expected on the basis of mtDNA barcoding are not always reflected in the nuclear genome, and advocate the use of AFLP markers as a check when mtDNA barcoding gives unexpected results.  相似文献   

6.
This paper launches an open access DNA barcoding project “AUSBS” under the Barcoding of Life Datasystems (BOLD). The aims of the project are to help scientists who lack the necessary morphological knowledge to identify known species using molecular markers, to aid native bee specialists with the recognition of species groups that morphologically are difficult to define, and, eventually, to assist with the recognition of new species among known species. Using integrative taxonomy, i.e. morphological comparison to type specimens in Australian museum collections combined with phylogenetic analysis of a fragment of the mitochondrial DNA cytochrome c oxidase subunit I (mtCOI) gene sequences led to the recognition of four new species of Euhesma Michener (Hymenoptera: Colletidae: Euryglossini) collected during intensive surveys in remote Australian conservation areas, which are described. The new species are Euhesma micans, Euhesma lyngouriae, and Euhesma aulaca in a species group associated with Eremophila flowers, and Euhesma albamala in the walkeriana species group.  相似文献   

7.
There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.  相似文献   

8.
Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world’s some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth’s landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies.  相似文献   

9.
A total of 123 Trichoderma strains were isolated from Norwegian surface-sourced drinking water. The water samples included raw water, treated water, and water from private homes and hospital installations. Trichoderma species are difficult to differentiate morphologically, but recent molecular identification tools, including DNA barcoding, successfully distinguish between closely related species. The diversity of Trichoderma spp. was explored by DNA sequencing of internal transcribed spacer (ITS) and translation elongation factor 1 alpha (TEF-1α). Sequence identification was performed in the TrichOKEY version 2.0 barcode program and in the multilocus similarity search database TrichoBLAST, combined with traditional blast searches in the EMBL/GenBank. A total of 11 known Trichoderma/Hypocrea species were identified. In addition, one group of unidentified Trichoderma strains was found to represent a separate, strongly supported subclade within the Pachybasium'A'/Hamatum clade, based on their TEF-1α haplotypes. Trichoderma viride comprised 49% of the identified strains, and was represented by four and eight slightly different ITS and TEF-1α haplotypes, respectively. Approximately 22% of the surface-derived water samples were positive for T. viride, and the species was frequently isolated throughout the surface-sourced drinking water distribution system. The results indicate that a broad range of Trichoderma species are present in Norwegian surface-sourced drinking. Water treatment has minor effect in removing Trichoderma from raw water, and active growth in the water distribution system is likely to occur.  相似文献   

10.
In recent years, DNA barcoding has been suggested as a useful molecular technique to complement traditional taxonomic expertise for fast species identification and biodiversity inventories. In this study, in situ application of DNA barcodes was tested on the plant community of a wetland area in central Italy. Four cpDNA markers (trnHpsbA, rbcL, rpoC1, and matK) were tested on 40 plant species, 26 of which strictly connected to the aquatic habitat. Universality of the method, ease of data retrieval, and correct assignation of the genetic markers to each species were evaluated. The markers showed different prospects of reliable applicability. The obtained sequences were blasted against the NCBI database to verify the correct species identification. A score ranging between 32% and 67% was achieved. Overall, eight species remained unidentified with all the tested barcodes due to the absence of conspecific sequences in the available databases. This work demonstrates some limitations in the applicability of DNA barcoding to accomplish complete taxonomical surveys. Difficulties encountered in this study urge refinement of technical protocols and accessibility to wider databases. Future technological advances and larger sample sets will certainly reinforce DNA barcoding as a useful tool to address knowledge and conservation of wetlands.  相似文献   

11.
Biodiversity studies require species level analyses for the accurate assessment of community structures. However, while specialized taxonomic knowledge is only rarely available for routine identifications, DNA taxonomy and DNA barcoding could provide the taxonomic basis for ecological inferences. In this study, we assessed the community structure of sediment dwelling, morphologically cryptic Chironomus larvae in the Rhine-valley plain/Germany, comparing larval type classification, cytotaxonomy, DNA taxonomy and barcoding. While larval type classification performed poorly, cytotaxonomy and DNA-based methods yielded comparable results: detrended correspondence analysis and permutation analyses indicated that the assemblages are not randomly but competitively structured. However, DNA taxonomy identified an additional species that could not be resolved by the traditional method. We argue that DNA-based identification methods such as DNA barcoding can be a valuable tool to increase accuracy, objectivity and comparability of the taxonomic assessment in biodiversity and community ecology studies.  相似文献   

12.
More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.  相似文献   

13.
为弥补传统形态分类方法的不足,探究应用DNA条形码技术进行分子生物学鉴定的可行性,本研究用DNA条形码技术检测了青海省海东地区3目6科14属18种110只小型兽类的COI基因部分序列。分析所测COI基因序列可知:种内遗传距离≤3%,种间遗传距离5-10%,属间遗传距离12-19%,种间遗传距离显著大于种内遗传距离。NJ树显示同种个体聚为有很高支持度的单一分支。有6个个体(4只黄胸鼠、2只小家鼠)在现场鉴定中被误定为其他种类。研究结果表明使用条形码技术能纠正形态学鉴定中的错误,也说明动物线粒体COI基因是一个有效的DNA条形码标准基因。  相似文献   

14.
15.
A high degree of endemism has been recorded for several plant groups collectively in Saint Katherine Protectorate (SKP) in the Sinai Peninsula. Nine endangered endemic plant species in SKP were selected to test the variable abilities of three different DNA barcodes; Riboluse-1,5- Biphosphate Carboxylase/Oxygenase Large subunit (rbcL), Internal Transcribed Spacer (ITS), and the two regions of the plastid gene (ycf1) as well as Start Codon Targeted (SCoT) Polymorphism to find the phylogenetic relationships among them. The three barcodes were generally more capable of finding the genetic relationships among the plant species under study, new barcodes were introduced to the National Centre for Biotechnology Information (NCBI) for the first time through our work. The barcode sequences were efficient in finding the genetic relationships between the nine species. However, SCoT polymorphism could only cluster plant species belonging to the same genus together in one group, but it could not cluster plant species belonging to the same families except for some primers solely. RbcL was the most easily amplified and identified barcode in eight out of the nine species at the species level and the ninth barcode to the genus level. ITS identified all the species to the genus level. Finally, ycf1 identified six out of the eight species, but it could not identify two of the eight species to the genus level.  相似文献   

16.
植物DNA条形码技术的发展及应用   总被引:2,自引:0,他引:2  
在对DNA条形码技术的发展过程进行归纳分析的基础上,对植物DNA条形码技术的研究进展、工作流程及分析方法、影响其鉴定准确性的因素及其在植物分类学研究中的应用现状及存在的争议进行了综合分析和阐述,并展望了植物DNA条形码技术的发展趋势及应用前景。通过具体实例说明将植物DNA条形码技术与传统植物学知识相结合可作为民族植物学的研究手段之一。认为:目前常用的植物DNA条形码主要有单一片段和多片段组合2种方式,这2种方式各有优缺点;常用的DNA序列有matK、trnH-psbA、rbcL和ITS等,但均有一定的局限性;针对不同的使用目的,应选择不同的植物DNA条形码标准;影响植物DNA条形码鉴定准确性的因素包括物种的类型和数量、系统树构建方法、杂交/基因渗入、物种起源时间的差异、分子进化速率差异等;当前植物DNA条形码研究工作的重点是选择合适的DNA片段并对其进行评价。  相似文献   

17.
Molecular techniques such as DNA barcoding have become popular in assisting species identification especially for cryptic species complexes. We have analysed data from a 468-bp region of the mitochondrial cytochrome oxidase subunit I (COI) gene from 200 specimens of 12 species of endemic New Zealand leafroller moths (Tortricidae) from the genera Planotortrix and Ctenopseustis to assess whether the DNA barcoding region can distinguish these species. Among the 200 sequences analysed, 72 haplotypes were recovered, with each genus forming a separate major clade. Maximum likelihood phylogenetic methods were used to test whether species fell into reciprocally monophyletic clades. The optimal phylogeny showed that four species within the genus Ctenopseustis (C. obliquana, C. herana, C. filicis and C. fraterna) and three within Planotortrix (P. octo, P. excessana and P. avicenniae) are polyphyletic. Shimodaira-Hasegawa tests rejected a null hypothesis of monophyly for the species C. obliquana, C. herana, P. octo and P. excessana. Comparisons of within and between species levels of sequence divergence for the same set of seven species showed cases where maximum levels of within-species divergence were greater than some levels of between-species divergence. DNA barcoding using this region of the COI gene is able to distinguish the two genera and some species within each genus; however, many species cannot be identified using this method. Finally, we discuss the possible reasons for this polyphyly, including incomplete lineage sorting, introgression, horizontal gene transfer and incorrect taxonomy.  相似文献   

18.
There is strong community-wide interest in applying molecular techniques to fungal species delimitation and identification, but selection of a standardized region or regions of the genome has not been finalized. A single marker, the ribosomal DNA internal transcribed spacer region, has frequently been suggested as the standard for fungi. We used a group of closely related blue stain fungi associated with the mountain pine beetle (Dendroctonus ponderosae Hopkins) to examine the success of such single-locus species identification, comparing the internal transcribed spacer with four other nuclear markers. We demonstrate that single loci varied in their utility for identifying the six fungal species examined, while use of multiple loci was consistently successful. In a literature survey of 21 similar studies, individual loci were also highly variable in their ability to provide consistent species identifications and were less successful than multilocus diagnostics. Accurate species identification is the essence of any molecular diagnostic system, and this consideration should be central to locus selection. Moreover, our study and the literature survey demonstrate the value of using closely related species as the proving ground for developing a molecular identification system. We advocate use of a multilocus barcode approach that is similar to the practice employed by the plant barcode community, rather than reliance on a single locus.  相似文献   

19.
20.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoCl, trnH-psbA, psbK-psbI, atpFatpH, and internal transcribed spacer (ITS)). The core combination rbcL + matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL +matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号